
Finish Accumulators: a Deterministic Reduction Construct
for Dynamic Task Parallelism

Jun Shirako, Vincent Cavé, Jisheng Zhao, and Vivek Sarkar
Department of Computer Science, Rice University

{shirako,vincent.cave,jisheng.zhao,vsarkar}@rice.edu

ABSTRACT
Parallel reductions represent a common pattern for comput-
ing the aggregation of an associative and commutative op-
eration, such as summation, across multiple pieces of data
supplied by parallel tasks. In this paper, we introduce fin-
ish accumulators, a unified construct that supports prede-
fined and user-defined deterministic reductions for dynamic
async-finish task parallelism. Finish accumulators are de-
signed to be integrated into terminally strict models of task
parallelism as in the X10 and Habanero-Java (HJ) languages,
which is more general than fully strict models of task paral-
lelism found in Cilk and OpenMP.
In contrast to lower-level reduction constructs such as

atomic variables, the high-level semantics of finish accumu-
lators allows for a wide range of implementations with differ-
ent accumulation policies, e.g., eager-computation vs. lazy-
computation. The best implementation can thus be selected
based on a given application and the target platform that it
will execute on. We have integrated finish accumulators into
the Habanero-Java task parallel language, and used them in
both research and teaching. In addition to their higher-
level semantics, experimental results demonstrate that our
Java-based implementation of finish accumulators delivers
comparable or better performance for reductions relative to
Java’s atomic variables and concurrent collection libraries.

1. INTRODUCTION
A large number of programming models have been re-

cently proposed to address the need for improved productiv-
ity and scalability in parallel programming e.g., Intel Thread-
ing Building Blocks (TBB) [16], Java Concurrency [7], Open-
MP 3.0 tasks [13], Cilk++[11], X10 [4], and Habanero-Java
(HJ) [2]. Unlike the SPMD programming models from past
work that assume a fixed number of concurrent threads,
these models advocate the use of dynamic task parallelism
to specify lightweight concurrent tasks that can be created
at any time and in any amount during program execution.
It is well known that a necessary condition for determin-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODET’13, March 17, 2013, Houston, Texas, USA.
Copyright 2013 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

ism in a parallel program is that any two operations that
are not causally related must commute. Parallel reductions
represent a common pattern for computing the aggregation
of parallel commutative operations across multiple pieces of
data supplied by parallel tasks. Typically, the programmer
selects a predefined operator for the reduction, but a few
programming models also allow programmers to specify a
user-defined reduction function instead.

In this paper, we introduce finish accumulators, a unified
construct that supports predefined and user-defined paral-
lel reductions for dynamic task parallelism i.e., for models
in which the set of tasks participating in a reduction can
increase. Finish accumulators are designed for terminally
strict task parallelism [10], as in the async and finish con-
structs found in X10 and Habanero-Java languages, which is
more general than the map-reduce model as well as the fully
strict models of task parallelism found in Cilk and OpenMP.
Given a computation dag [1, 10], if every join edge goes from
a task to its spawn tree ancestor, the computation is called
a strict computation. If every join edge goes from a task to
its spawn tree parent, the computation is called a fully-strict
computation [1]. If a computation is strict and every join
edge goes from the last instruction of a task to its spawn tree
ancestor, the computation is called terminally-strict [10].

We have integrated finish accumulators into the HJ task
parallel language, and used them in both research and teach-
ing. In contrast to lower-level reduction constructs such
as atomic variables, the high-level semantics of finish ac-
cumulators allows for a wide range of implementations with
different accumulation policies, e.g., eager-computation vs.
lazy-computation. Experimental results demonstrate that
our Java-based implementation of finish accumulators de-
livers comparable or better performance for computing re-
ductions relative to Java’s atomic variables and concurrent
collections. Specifically, our Java-based implementation of
finish accumulators achieved speedups of up to 2.2× on an
8-core Intel Core i7 system and up to 11.4× on a 64-thread
Sun UltraSPARC T2 relative to the parallel reduction using
standard Java concurrency constructs.

The rest of the paper is organized as follows. Section 2 dis-
cusses background related to reductions and dynamic task
parallelism. Section 3 describes the proposed programming
interface and semantics of finish accumulators. Section 4
discusses implementation details, and Section 5 presents our
experimental results. Finally, Section 6 and Section 7 sum-
marize related work and our conclusions.

2. BACKGROUND

1: int cutoff; // Threshold to stop creating new tasks
2: AtomicInteger atom = new AtomicInteger(0);
3:
4: void fib (int n, int depth) {
5: if (n < 2) { atom.addAndGet(n); }
6: else {
7: async seq (depth >= cutoff) fib(n - 1, depth + 1);
8: async seq (depth >= cutoff) fib(n - 2, depth + 1);
9: }}

Figure 1: Reduction using JUC AtomicInteger

2.1 Habanero-Java
The Habanero Java (HJ) language under development at

Rice University [2] proposes an execution model for multi-
core processors that builds on four orthogonal constructs:

1. Lightweight dynamic task creation and termination us-
ing async and finish constructs [10].

2. Locality control with task and data distributions using
the place construct [3]. Places enable co-location of
async tasks and data objects.

3. Mutual exclusion and isolation among tasks using the
isolated construct [12].

4. Collective and point-to-point synchronization using the
phasers construct [15] along with their accompanying
phaser accumulators [14].

The HJ language derives from initial versions of the X10
language (up to v1.5) that used Java as the underlying se-
quential language [4]. Since HJ is based on Java, the use of
certain primitives from the Java Concurrency Utilities [7] is
also permitted in HJ programs. We briefly recapitulate the
async and finish constructs for task creation and termination
in HJ.

• async: The statement “async 〈stmt〉” causes the par-
ent task to create a new child task to execute 〈stmt〉.
Execution of the async statement returns immediately
i.e., the parent task can proceed immediately to its
next statement.

• forasync: The statement“forasync (point p : re-
gion) 〈stmt〉” creates new child tasks as iterations of a
parallel loop. Note that region is the iteration space.

• finish: The statement “finish 〈stmt〉” causes the par-
ent task to execute 〈stmt〉 and then wait till all sub-
tasks created within 〈stmt〉 have terminated at the end
of the finish scope. Note that the sub-tasks include
transitively spawned tasks. There is an implicit finish
statement surrounding the main program.

2.2 Reductions in Java
The Java Concurrency Utilities [7] is a standard library

in Java, which supports various atomic constructs such as
AtomicInteger and ConcurrentHashMap that can be used
to implement predefined reductions. As a simple example
of a sum reduction using AtomicInteger in an HJ program,
Figure 1 computes the n-th Fibonacci number in AtomicIn-
teger atom using a parallel variant of the standard recursive
formulation. A seq clause in HJ’s async construct is used
to spawn tasks until the depth of the recursive fib invo-
cation reaches a specified cutoff. Although this program

1: static struct Reducer implements Reducible[Int] {
2: public def zero() = 0;
3: public operator this(a:Int, b:Int) = a + b;
4: }
5: public def run() {
6: val result = finish (Reducer()) {
7: val d = (0..(N-1))->here;
8: for (p in d.region) async { offer 1; }
9: };

10: }

Figure 2: Reduction using X10 collecting-finish

has a simple structure with large amounts of parallelism, it
raises a couple of issues regarding usability and efficiency.
From the usability viewpoint, programmers have to ensure
that no race conditions or sources of nondeterminism arise
from shared data accesses in dynamic tasks. Since the in-
termediate state of the atom object is always visible to a
task, incomplete results can be referenced nondeterminis-
tically (though that’s not the case in Figure 1). From the
performance viewpoint, the memory and network contention
arising from a single atomic variable can be a scalability bot-
tleneck, especially with a large number of cores.

The finish accumulators introduced in this paper protect
programmers from both these issues. Semantic guarantees
such as determinism and race freedom follow from the high-
level interfaces in an accumulator, which in turn also offers
great flexibility in the choice of implementation design for
a given application and target platform. In particular, we
introduce a lazy accumulation policy that avoids the mem-
ory and network contention issues mentioned above, when
compared with an eager policy based on atomic operations.

2.3 X10 Collecting Finish
A more recent example of reductions for terminally strict

parallel programs can be found in X10’s collecting-finish con-
struct [17]. A simple example is shown in Figure 2. As
with other user-defined reductions, the reduction semantics
is specified by a data type (struct) that implements a Re-

ducible[T] interface (lines 1–4). The interface requires the
user to specify the reduction operator and the zero (iden-
tity) value as methods.

As shown in lines 6–9, the result of the collecting finish
is obtained by treating the finish construct as an expres-
sion (lval), thereby allowing at most one reduction per finish
construct. In contrast, the finish accumulators introduced
in this paper support multiple accumulators per finish con-
struct.

3. PROGRAMMING MODEL
In this section, we introduce the programming interface

and semantics of finish accumulators. There are two logi-
cal operations, put, to remit a datum and get, to retrieve
the result from a well-defined synchronization (end-finish)
point. Section 3.1 describes the details of these operations,
and Section 3.2 describes how user-defined reductions are
supported in finish accumulators.

3.1 Accumulator Constructs
The operations that a task, Ti, can perform on accumula-

tor, ac, are defined as follows.

• new: When task Ti performs a “ac = new accumula-

tor(op, dataType);” statement, it creates a new ac-

ac = new accum(...);
async { ... ac.put(foo()); } // T1
finish (ac) {
 async { // T2
 finish {
 async { // T3
 ac.put(bar());
 }
 ac.put(baz());
 }
 ac.put(qux());
 }
 ac.put(quux());
}
n = ac.get();

ac.put(...);

ac.put(...);

ac.put(...);

ac.put(...);

ac.get(); ac.put(...);ac.put(...);ac.put(...);

: async : end-finish sync

ac = new accum(...);

finish (ac) {

}

/* ERROR */

T0

T2

T3

T1

Figure 3: Finish accumulator example with three

tasks that perform a correct reduction and one that

throws an exception

cumulator, ac, on which Ti is registered as the owner
task. Here, op is the reduction operator that the accu-
mulator will perform, and dataType is the type of the
data upon which the accumulator operates. Currently
supported predefined reduction operators include SUM,
PROD, MIN, and MAX; CUSTOM is used to specify user-
defined reductions.

• put: When task Ti performs an“ac.put(datum);” op-
eration on accumulator ac, it sends datum to ac for
the accumulation, and the accumulated value becomes
available at a later end-finish point. The runtime sys-
tem throws an exception if a put() operation is at-
tempted by a task that is not the owner and does not
belong to a finish scope that is associated with the
accumulator. When a task performs multiple put()

operations on the same accumulator, they are treated
as separate contributions to the reduction.

• get: When task Ti performs an “ac.get()” operation
on accumulator ac with predefined reduction opera-
tors, it obtains a Number object containing the ac-
cumulated result. Likewise “ac.customGet()” on ac
with a CUSTOM operator returns a user-defined T object
with the accumulated result. When no put is per-
formed on the accumulator, get returns the identity
element for the operator, e.g., 0 for SUM, 1 for PROD,
MAX_VALUE/MIN_VALUE for MIN/MAX, and user-defined
identity for CUSTOM.

• Summary of access rules: The owner task of ac-
cumulator ac is allowed to perform put/get opera-
tions on ac and associate ac with any finish scope
in the task. Non-owner tasks are allowed to access
ac only within finish scopes with which ac is asso-
ciated. To ensure determinism, the accumulated re-
sult only becomes visible at the end-finish synchro-
nization point of an associated finish; get operations
within a finish scope return the same value as the
result at the beginning of the finish scope. Note that
put operations performed by the owner outside asso-
ciated finish scopes are immediately reflected in any

1: void foo() {
2: accum<Coord> ac = new accum<Coord>(Operation.CUSTOM,
3: reducible.class);
4: finish(ac) {
5: forasync (point [j] : [1:n]) {
6: while(!isEmpty(j)) {
7: ac.put(getCoordinate(j));
8: } } }
9: Coord c = ac.customGet();

10: System.out.println("Furthest: " + c.x + ", " + c.y);
11: }
12:
13: class Coord implements reducible<Coord> {
14: public double x, y;
15: public Coord(double x0, double y0) {
16: x = x0; y = y0;
17: }
18: public Coord identity(); {
19: return new Coord(0.0, 0.0);
20: }
21: public void reduce(Coord arg) {
22: if (sq(x) + sq(y) < sq(arg.x) + sq(arg.y)) {
23: x = arg.x; y = arg.y;
24: } }
25: private double sq(double v) { return v * v; }
26: }

Figure 4: User-defined reduction example

subsequent get operations since those results are de-
terministic.

To associate a finish statement with multiple accumula-
tors, Towner can perform a special finish statement of the
form, “finish (ac1, ac2, · · · , acn)〈stmt〉”. Note that fin-

ish (ac) becomes a no-op if ac is already associated with
an outer finish scope.

Figure 3 shows an example where four tasks T0, T1, T2,
and T3 access a finish accumulator ac. As described earlier,
the put operation by T1 throws an exception due to nonde-
terminism since it is not the owner and was created outside
the finish scope associated with accumulator ac. Note that
the inner finish scope has no impact on the reduction of
ac since ac is associated only with the outer finish. All
put operations by T0, T2, and T3 are reflected in ac at the
end-finish synchronization of the outer finish, and the
result is obtained by T0’s get operation.

3.2 User-defined Reductions
User-defined reductions are also supported in finish accu-

mulators, and its usage consists of these three steps:
1) specify CUSTOM and reducible.class as the accumula-
tor’s operator and type,
2) define a class that implements the reducible interface,
3) pass the implementing class to the accumulator as a type
parameter.

Figure 4 shows an example of a user-defined reduction.
Class Coord contains two double fields, x and y, and the
goal of the reduction is to find the furthest point from the
origin among all the points submitted to the accumulator.
The reduce method computes the distance of a given point
from the origin, and updates x and y if arg has a further
distance than the current point in the accumulator.

In the current implementation, programmers are assumed
to make the reduce method commutative and associative,
and hence it can produce nondeterministic results if the as-
sumption is not satisfied. There are two challenges in order

Eager: Reduction at put

ac.put()

end-finish

ac.put

ac.put() ac.put

ac.put() ac.put

Acumulator

atomic variable

read-only result field

ac.put() ac.put

ac.put() ac.put

ac.put() ac.put

Acumulator

local reduction fields

read-only result field

store

reduce & store end-finish

Lazy: Reduction at end-finish

ac.get()

ac.get()

T0 T1 T2

T0 T1 T2

Figure 5: Eager and Lazy Implementation

to avoid such indeterminism in the user-defined reduction:
compile-time check for commutativity and associativity and
runtime support for ordered reductions. The compile-time
checking can be implemented as pattern recognition if the
reduce method is implemented as combination of collecting
operations and/or predefined operations. When commuta-
tivity and associativity were not guaranteed at compile-time,
the runtime will select the ordered reduction instead of par-
allel reductions introduced in Section 4. The ordered re-
duction will preserve all data from the put operations with
the depth-first order of the async tree, and sequentially re-
duce the preserved data at the end-finish synchronization
point. These challenges are important future work to be
addressed.

4. IMPLEMENTATION
This section describes the implementation of finish accu-

mulators in the Habanero-Java runtime. We provide both
eager and lazy implementation approaches for finish accu-
mulators. The implementation choice can be specified as
a command-line argument or an environment variable, and
does not require any change in the source code. (Automatic
selection of the implementation choice is a subject for future
research.) As shown in Figure 5, an eager-compute imple-
mentation performs an accumulation immediately when a
put operation is invoked, while a lazy-compute implementa-
tion merely captures each datum in a put operation so that
it can be accessed later when the reduction computation is
performed at an end-finish point.

4.1 Eager Implementation Policy
The eager approach uses atomic operations to incremen-

tally perform the reduction as soon as a datum is put by a
task. The accumulator contains an atomic variable of the
specified type, which is updated at each put operation. For
predefined reductions (SUM, PROD, MIN, and MAX), we used
Java’s AtomicInteger class for int accumulators, and cre-
ated an AtomicDouble class based on Java’s AtomicRefer-
ence class for double accumulators. For user-defined reduc-
tions, the eager approach simply uses a standard Java lock
implementation (ReentrantLock), so that the user-defined
data structures can be updated within a critical section.
Figure 6 shows the pseudocode for eager implementations

of predefined reductions (lines 2–11) and user-defined reduc-

1: AtomicInteger atomI;
2: public void putEager(int val) { // Predefined int
3: if (ope == Operator.SUM) {
4: while (true) {
5: int cur = atomI.get();
6: int neo = cur + val;
7: if (atomI.compareAndSet(cur, neo)) break;
8: else delay(); // Optional delay
9: }

10: } else ... // For PROD, MIN, MAX
11: }
12:
13: T transitState;
14: public void putEager(T arg) { // User-defined
15: lockForReduce.lock(); // General lock (JUC)
16: try {
17: if (transitState == null)
18: transitState = arg;
19: else
20: transitState.reduce(arg); // Reduce exclusively
21: } finally { lockForReduce.unlock(); }
22: }

Figure 6: Eager implementation of the put method

1: int accumArrayI[];
2: public void putLazy(int val, int id) { // Predefined
3: if (ope == Operator.SUM) {
4: accumArrayI[id*strideI] += val;
5: } else ... // PROD, MIN, MAX
6: }
7:
8: T reducibleArray[];
9: public void putLazy(T arg, int id) { // User-defined

10: if (reducibleArray[id*strideI] == null)
11: reducibleArray[id*strideI] = arg;
12: else
13: reducibleArray[id*strideI].reduce(arg);
14: }

Figure 7: Lazy implementation of the put method

tions (lines 14–22). The while loop in lines 4–9 corresponds
to the atomic update for the SUM operation. Likewise, the
other predefined reductions rely on the compareAndSet() op-
eration supported in AtomicInteger. The put operation for
user-defined reductions simply performs the user’s reduce()
method guarded by a general lock. At the end-finish syn-
chronization point, the value stored in atomI or transit-

State is copied into the result field of the accumulator and
becomes visible to any task registered on the accumulator.

The eager approach has a straightforward implementation
and good portability across different runtimes because it is
independent of the underlying task scheduler implementa-
tion. On the other hand, the concurrent accesses to the sin-
gle atomic variable may suffer from significant memory and
network contention. To improve the scalability of atomic
operations, we employ the idea of adding a delay so as to
reduce the contention. There are various choices in the im-
plementation of the delay function, such as random, propor-
tional, exponential, and constant. For the results reported
in this paper, we used a random function of the form, de-
lay * (1.0 + rand.nextDouble()), where delay is a tun-
able parameter for each platform and rand is an instance
of java.util.Random whose nextDouble() method returns a
double value between 0 and 1.

4.2 Lazy Implementation Policy
In the lazy approach, each worker, which is a thread as-

signed to process multiple tasks in the runtime scheduler,
has a local reduction field to accumulate data from the as-
signed tasks. The global reduction across workers is de-
layed until the end-finish synchronization point. We used
the Habanero-Java work-stealing scheduler [10], for which
the number of workers is fixed at program startup time and
hence an accumulator contains a fixed size array (with one
entry per worker) of the corresponding data type, int, dou-
ble, or T.
Figure 7 shows the pseudocode for predefined reductions

(lines 2–6) and user-defined reductions (lines 9–14) in the
lazy implementation. The id of each worker is given by the
runtime, and strideI (= cache line size divided by array
element size) is for array padding to avoid false sharing. As
shown in the codes, the put operation for both predefined
and user-defined reductions locally updates the correspond-
ing array element. The global reduction at the end-finish

synchronization point reduces all local results and stores into
the result field.
The lazy approach allows large amount of parallelism with-

out any inter-thread communication except for the single
global reduction. It can be the best implementation for the
runtime system, when the number of workers is fixed and
relatively small. For large number of workers, the global re-
duction will need to be replaced by a reduction tree for scal-
ability. Another issue with the current lazy approach is that
it is less portable than the eager approach. For instance,
we will need to replace the fixed size array by a dynamic
collection data structure for runtime systems in which the
number of workers can be dynamically changed.

5. EXPERIMENTAL RESULTS
In this section, we present experimental results for an HJ-

based implementation of finish accumulators on two plat-
forms. The first platform is a 8-core (2 quad-cores) 2.4GHz
Intel Core i7 system with 12 GB main memory running Red
Hat Enterprise Linux Server release 5.5. We conducted all
experiments on this system by using the Java SE Runtime
Environment (build 1.6.0 24-b07) with Java HotSpot Server
VM (build 19.1-b02, mixed mode). The second platform is
a 64-thread (8 cores × 8 threads/core) 1.2 GHz Sun Ultra-
SPARC T2 system with 32 GB main memory running So-
laris 10. We used the Java 2 Runtime Environment (build
1.5.0 12-b04) with Java HotSpot Server VM (build 1.5.0 12-
b04, mixed mode). All results in this paper were obtained
using the Habanero-Java compiler and runtime [2] with the
work stealing scheduler [9]. For the purpose of reducing the
impact of JIT compilation time and other JVM services in
the performance comparisons, the main HJ program was ex-
tended with a 10-iteration loop within the same process, and
the result with the smallest execution time was reported in
each case.
We use the following three benchmarks, two benchmarks

for predefined reductions and one for user-defined reduc-
tions:

• Nqueens was ported from the Barcelona OpenMP Tasks
Suite (BOTS) benchmarks [5] to Habanero-Java (HJ).
For both platforms, we ran the benchmark with n = 13
and cutoff = 4. Since, Nqueens counts the total num-
ber of solutions found by parallel tasks and (in our im-

0

1

2

3

4

5

1 2 4 8

S
p
e
e
d
u
p
 v
s
.
la
z
y
 w

/
1
-c
o
re

threads

atomic-int eager lazy

Figure 8: Speedup of Nqueens vs. Lazy with 1-core

on Core i7

0

1

2

3

1 2 4 8

S
p
e
e
d
u
p
 v
s
.
la
z
y
 w

/
1
-c
o
re

threads

atomic-int eager lazy

Figure 9: Speedup of Fib vs. Lazy with 1-core on

Core i7

plementation) the number of pruned branches in the
search tree, we used predefined SUM finish accumulators
for both counts.

• Fib was also ported from the BOTS benchmarks. It
computes the n-th Fibonacci number using a recursive
parallelization strategy. Here, n = 40 and cutoff = 12
was used as inputs for both platforms. A predefined
SUM finish accumulator was used for this benchmark,
similar to the AtomicInteger version shown earlier in
Figure 1.

• WordCount is an HJ program that counts the number
of occurrences of each word in a given text document.
This implementation divides the input document into
chunks of even size. Each parallel task processes its
assigned chunk, after which the results are combined
with a user-defined finish accumulator. The input doc-
ument for both platform has 2,000,000 words.

In the following sections, we compare three implementation
variants for these benchmarks: 1) finish accumulator with
eager reduction policy, 2) lazy policy, and 3) JUC-based vari-
ant using java.util.concurent libraries (AtomicInteger
for Nqueens and Fib, and ConcurrentHashMap for Word-
Count). (Note that there are no determinism guarantees
when the JUC libraries are used.)

5.1 Speedup on Core i7
Figures 8–10 show the speedup numbers on Core i7. Here,

the baseline is the single thread execution time of finish ac-
cumulator with lazy policy, which is the primary focus of this

0

1

2

3

4

5

6

1 2 4 8

S
p
e
e
d
u
p
 v
s
.
la
z
y
 w

/
1
-c
o
re

threads

juc-conc-hash eager lazy

Figure 10: Speedup of WordCount vs. Lazy with

1-core on Core i7

0

5

10

15

20

25

1 2 4 8 16 32 64

S
p
e
e
d
u
p
 v
s
.
la
z
y
 w

/
1
-t
h
re
a
d

threads

atomic-int eager lazy

Figure 11: Speedup of Nqueens vs. Lazy with 1-

thread on UltraSPARC T2

paper1. As shown in Figures 8–10, finish accumulator with
lazy implementation policy shows better scalability than ea-
ger and JUC-based variants for all three benchmarks. As
discussed in Section 4.2, the lazy policy can be the best ap-
proach for a runtime with a fixed number of worker threads
such as HJ’s work-stealing scheduler. The predefined re-
duction with eager policy uses AtomicInteger internally and
shows almost the same performance for Nqueens and Fib

compared to an explicit use of JUC’s AtomicInteger. Like-
wise, the eager policy for user-defined reductions employs
JUC’s ReentrantLock so as to support any reduction defined
by users. Therefore, it performs worse than the JUC-based
version using ConcurrentHashMap and lazy finish accumu-
lator version of WordCount.

5.2 Speedup on UltraSPARC T2
Figures 11–13 show the speedup numbers on UltraSPARC

T2. Similar to the results for Core i7, the lazy policy shows
better scalability compared with the eager policy and the
JUC-based variants. Further, the eager policy on Ultra-
SPARC T2 shows better scalability than the JUC-based
variants for Nqueens and Fib. As discussed in Section 4.1,
the predefined operations of eager policy employs the delay
optimization to reduce memory and network contention for
atomic operations. This optimization is especially impor-
tant on platforms with larger number of hardware threads
such as UltraSPARC T2. On the other hand, the eager im-
plementation relies on a general lock implementation to sup-

1This variant has almost same execution time as the serial
versions except for Fib, whose computation cost is smaller
than communication cost due to reduction.

0

5

10

15

20

25

1 2 4 8 16 32 64

S
p
e
e
d
u
p
 v
s
.
la
z
y
 w

/
1
-t
h
re
a
d

threads

atomic-int eager lazy

Figure 12: Speedup of Fib vs. Lazy with 1-thread

on UltraSPARC T2

0

2

4

6

8

10

1 2 4 8 16 32 64

S
p
e
e
d
u
p
 v
s
.
la
z
y
 w

/
1
-t
h
re
a
d

threads

juc-conc-hash eager lazy

Figure 13: Speedup of WordCount vs. Lazy with

1-thread on UltraSPARC T2

port user-defined reduction, and trades off flexibility against
scalability. A more efficient implementation of the eager pol-
icy for user-defined reductions is a subject for future work.

6. RELATED WORK
It is well known from past work that reductions and scans

with associative operations can be performed in parallel.
When reductions are performed with dynamic parallelism
(e.g., as in OpenMP [13]), then it is convenient to assume
commutativity as well, as in the finish accumulators intro-
duced in this paper. MPI [8] supports both predefined and
user-defined reductions in a distributed-memory context.

In OpenMP, a parallel construct can optionally include
a clause which specifies a reduction operator and a list of
scalar shared locations. For each shared location, a private
copy array is allocated sized to the number of implicit/ex-
plicit threads created in the parallel construct, initialized to
the identity element for the operator. On exit from the
reduction, these arrays are populated with the values of
the private copies in accordance with the specified opera-
tor. The supported reduction operators include sum, prod-
uct, min, max, logical-or, logical-and, bitwise-or, bitwise-
and, and bitwise-xor.

In MPI, reductions are embodied in the following collec-
tive routines: MPI_Reduce, MPI_AllReduce, MPI_Scan and
MPI_Reduce_scatter. MPI supports various type of prede-
fined reduction operators including those in OpenMP, MIN-
LOC and MAXLOC operations. Furthermore, MPI_OP_CREATE
enables user-defined reduction which can be used in the col-
lective routines.

In addition to OpenMP and MPI, task-parallel models

such as Cilk++ [11] and TBB [11] also support predefined
and user-defined reductions. In Cilk++’s Reducer construct [6],
each task has its own local “view” of the reduction vari-
able/object and these local views are reduced at every syn-
chronization point. Therefore, Cilk++ Reducer model does
not need to specify a particular synchronization point for re-
ductions. Additionally, programmers are allowed to access
intermediate results of Reducer objects, which gives more
flexibility to expert users but also increases the possibility
of errors due to nondeterminism. On the other hand, fin-
ish accumulator model specifies an end-finish synchroniza-
tion point where the reduction is to be completed, and pre-
vents programmers from accessing incomplete intermediate
results. As we have seen, this model enables time/space-
efficient reduction implementations with flexibility in the
choice of implementation design for a given application and
target platform.
Finally, finish accumulators can be viewed as an extension

of HJ’s phaser accumulators [14]. Phaser accumulators sup-
port per-phase reductions, which are more restrictive than
the finish accumulators introduced in this paper. Integra-
tion of phaser accumulators and finish accumulators is an
interesting topic for future work.

7. CONCLUSIONS
In this paper, we introduced finish accumulators, a unified

construct to support predefined and user-defined parallel re-
duction for dynamic task parallelism. We defined the pro-
gramming model and semantics of finish accumulators in a
manner that guarantees determinism, while also allowing for
large flexibility in implementation choices. In this paper, we
presented two implementation variants for finish accumula-
tors: eager and lazy. Experimental results obtained on two
different platforms demonstrated that our Java-based im-
plementation of finish accumulators delivers comparable or
better performance than the reduction implementation using
Java’s standard concurrent utilities, while also guaranteeing
determinism.
Opportunities for future research related to accumulators

include support of hierarchical tree-based reductions for fur-
ther scalability, compiler optimizations for fusing multiple
put operations by sequentialized tasks, efficient implemen-
tations for user-defined eager reductions, and integration of
finish accumulators with phaser accumulators.

Acknowledgments
This work was supported in part by NSF award CCF-0964520.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect those of the National Science Foundation.
We would like to thank members of the Habanero group at

Rice for contributions to the Habanero Java infrastructure
used in this research, and especially Yi Guo for experiences
gained from his early implementation of finish accumula-
tors. We are grateful to the anonymous reviewers for their
comments and suggestions. Finally, we would like to thank
Keith Cooper for providing access to the Xeon system and
Doug Lea for providing access to the UltraSPARC T2 sys-
tem used to obtain the performance results reported in this
paper.

8. REFERENCES
[1] R. D. Blumofe and C. E. Leiserson. Scheduling

multithreaded computations by work stealing. J.
ACM, 46(5):720–748, Sept. 1999.

[2] V. Cavé et al. Habanero-Java: the New Adventures of
Old X10. In PPPJ’11: Proceedings of 9th
International Conference on the Principles and
Practice of Programming in Java, 2011.

[3] S. Chandra et al. Type inference for locality analysis
of distributed data structures. In PPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming,
pages 11–22, New York, NY, USA, 2008. ACM.

[4] P. Charles et al. X10: an object-oriented approach to
non-uniform cluster computing. In OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, pages 519–538, New York,
NY, USA, 2005. ACM.

[5] A. Duran et al. Barcelona OpenMP tasks suite: A set
of benchmarks targeting the exploitation of task
parallelism in openmp. In ICPP’09, 2009.

[6] M. Frigo et al. Reducers and other cilk++
hyperobjects. In Proceedings of the twenty-first annual
symposium on Parallelism in algorithms and
architectures, SPAA ’09, 2009.

[7] B. Goetz. Java Concurrency In Practice.
Addison-Wesley, 2007.

[8] W. Gropp et al. Using MPI: Portable Parallel
Programming with the Message-Passing Interface.
MIT Press, Cambridge, MA, 1994.

[9] Y. Guo et al. Slaw: a scalable locality-aware adaptive
work-stealing scheduler. In Proc. IEEE Int’l. Parallel
and Distributed Processing Symp. (IPDPS).

[10] Y. Guo et al. Work-First and Help-First Scheduling
Policies for Async-Finish Task Parallelism. In IPDPS
’09: International Parallel and Distributed Processing
Symposium, 2009.

[11] C. E. Leiserson. The cilk++ concurrency platform.
The Journal of Supercomputing, 51(3):244–257, 2010.

[12] R. Lublinerman et al. Delegated Isolation. In
OOPSLA ’11: Proceeding of the 26th ACM SIGPLAN
conference on Object oriented programming systems
languages and applications, 2011.

[13] OpenMP Application Program Interface, version 3.0.
http://www.openmp.org/mp-documents/spec30.pdf.

[14] J. Shirako et al. Phaser accumulators: A new
reduction construct for dynamic parallelism. In Proc.
of the 2009 IEEE International Symposium on
Parallel&Distributed Processing, IPDPS ’09.

[15] J. Shirako et al. Phasers: a unified deadlock-free
construct for collective and point-to-point
synchronization. In Proc. of the 22nd international
conference on Supercomputing, ICS ’08, 2008.

[16] TBB. http://www.threadingbuildingblocks.org.

[17] C. Zhang et al. Evaluating the performance and
scalability of mapreduce applications on x10. In
Proceedings of the 9th international conference on
Advanced parallel processing technologies.

