
Dynamic Determinism Checking for Structured Parallelism

Edwin Westbrook1 Raghavan Raman2 Jisheng Zhao3 Zoran Budimlić3 Vivek Sarkar3

Kestrel Institute1, Oracle Labs2, Rice University3

westbrook@kestrel.edu, raghavan.raman@oracle.com, {jz10,zoran,vsarkar}@rice.edu

Abstract
Determinism is a powerful property, making it much easier to de-
sign, implement, and debug parallel programs when it can be guar-
anteed. There has been much work on guaranteeing determinism
of programs, both through dynamic and static approaches. The dy-
namic approaches tend to have high overheads, while the static ap-
proaches can be difficult for non-experts to understand and can re-
quire high programmer effort in the form of typing annotations and
code restructuring to fit the static type system. In this work, we
present a compiler and runtime system that ensures determinism
of application code, assuming that libraries satisfy their determin-
ism specifications. In our system, the library writer includes deter-
minism specifications in the form of annotations on the methods in
the library. When these libraries are used by application program-
mers, our compiler will insert dynamic checks where necessary to
ensure determinism at runtime. We demonstrate that our inserted
dynamic checks lead to an average (geometric mean) slowdown of
only 1.26× on 16 cores for our benchmark, thereby establishing
the practicality of our approach.

1. Introduction
Writing parallel programs is hard because of the potential for non-
determinism. Although non-determinism can be useful to concur-
rency experts, because it can enable writing of high-performance li-
braries with low amounts of synchronization, it is very difficult for
mainstream application programmers to understand: even defining
one of the most common forms of non-determinism, data races, re-
quires an understanding of highly complex memory models [7, 16].
As a result, there has been a growing interest in parallel pro-
gramming languages, type systems, compilers and runtime systems
that ensure determinism for mainstream programmers [1, 2, 4–
6, 17, 24].

At a high level, the problem of ensuring deterministic behavior
of a parallel program1 can be divided into two sub-problems:

1. Identify and verify key operations that commute with each other
and/or themselves.

2. Ensure that only commuting operations are executed in parallel.

These two sub-problems correspond to two sorts of program code.
The first applies to high-performance library code written by par-
allelism experts. These parallelism experts are likely to understand
the various approaches [10, 12, 21] that have been put forth to solve
this problem, since they are in the same domain of knowledge and
use ideas and concepts already familiar to parallelism experts. Fur-
ther, although these approaches may require a lot of verification
effort, high-performance libraries do not change often (precisely

1 We are concerned only with explicitly parallel programming in this paper;
although the problem can be addressed somewhat by automatic paralleliza-
tion, such approaches have major limitations that are beyond the scope of
this paper.

because they are difficult to get right), so the cost of library verifi-
cation can be amortized over multiple applications.

The second sub-problem applies to general application code,
which represents the majority of the code written by “everybody
else”. There are also a number of approaches that apply to this
problem, both dynamic [1, 2, 17]) and static [4, 5, 14]. Dynamic
approaches, however, often yield a large overhead, which negates
the benefits of parallel programming. Static approaches have no
overhead, since all checking is done statically, but they can be
difficult to use by “everybody else”, who may not be familiar
with the complex notions involved in these approaches. Further,
they often have high annotation overheads, and generally require
programs to be structured in a particular way, to use particular
parallel patterns that are supported by the approach.

In this paper, we introduce a new approach to the problem of
ensuring that only commuting operations are executed in parallel.
In our system, library writers (typically, parallelism experts) write
libraries with additional annotations that specify how the libraries
can be used in parallel, while guaranteeing determinism. Specifi-
cally, libraries in our system include annotations on their methods
that specify if the methods commute with each other and/or them-
selves. When these libraries are used in the application code, our
compiler inserts dynamic checks where necessary to ensure that
only commuting operations execute in parallel, thereby guarantee-
ing determinism. Programmers can use our libraries just as they
would use any other Java or C++ library. Our approach also has
low overhead, with a slowdown of only 1.26× on our benchmarks.

In more detail, our approach has been implemented as a lan-
guage called Habanero Java with determinism (HJd), an extension
of the Habanero Java (HJ) language [9] which itself is a task-
parallel extension of Java. In addition to HJ, HJd includes com-
mutativity sets, which are parallel library annotations that specify
which operations commute. These annotations provided by the li-
brary implementer are trusted by HJd, and verifying them is beyond
the scope of this paper. The HJd compiler translates these annota-
tions into calls into the runtime system. When these library methods
are called from the application code, our runtime system performs
dynamic checks to ensure only commuting methods are executed in
parallel. The dynamic checks are implemented using the Dynamic
Program Structure Tree (DPST) data structure introduced by Ra-
man et al. [19]. This structure captures may-happen-in-parallel in-
formation in a deterministic and efficient manner, and is the core of
one of the fastest existing race-detection algorithms. Our approach
guarantees determinism only up to the first failure. If there are no
failures, our approach guarantees determinism.

The remainder of this paper is organized as follows. Section 2
introduces commutativity sets. Section 3 explains how commutativ-
ity sets are implemented in the form of permission regions in HJd.
Section 4 describes the DPST structure and how it is used in HJd to
perform dynamic checks. Section 5 evaluates a set of determinis-
tic benchmarks and measures the performance impact of dynamic
checks. Finally, Sections 6 and 7 give related work and conclude.

1 c l a s s CountFactors {
2 i n t countFactors (i n t n) {
3 AtomicInteger cnt = new AtomicInteger ();
4 f i n i s h {
5 f o r (i n t i = 2; i < n; ++i)
6 a s y n c {
7 i f (n % i == 0) cnt.increment ();
8 }}
9 r e t u r n cnt.get ();

10 }
11 }
12

13 @ClassCommSets{"read","modify"}
14 f i n a l c l a s s AtomicInteger {
15 @CommSets{"read"} i n t get () { ... }
16 @CommSets{"modify"} v o i d increment ()
17 { ... }
18 @CommSets{"modify"} v o i d decrement ()
19 { ... }
20 @CommSets{"read","modify"} i n t initValue ()
21 { ... }
22 i n t incrementAndGet () { ... }
23 }

Figure 1. A Deterministic Counting Program

2. Determinism and Commutativity Sets
Following the seminal work of Steele [20], HJd ensures determin-
ism by ensuring that only operations which commute with each
other can run in parallel. Two operations commute iff a program
that calls them cannot observe whether one completes before the
other or if they ran in parallel. Ensuring that only commuting oper-
ations occur in parallel guarantees determinism because, no matter
in what order the operations actually complete, the end results will
be the same. As a simple example, two reads of an object field al-
ways commute with each other, since neither read can influence the
other. Field writes, however, do not in general commute with either
field writes or field reads. The Java Memory Model (JMM) [16] de-
fines writes that occur in parallel with reads to be data races, which
can lead to complex nondeterministic behaviors.

An example of a deterministic program calling commuting op-
erations in parallel is given in Figure 1. The top half of the figure
(before line 12) defines the method countFactors() that counts
the number of factors (prime or otherwise) of the input n which are
greater than 1 and less than n. This is done with a for loop that
spawns a new task2 for each index i in this range, using HJ’s async
construct. The loop occurs inside an instance of HJ’s finish con-
struct, which waits for all child tasks to complete before proceed-
ing. The count of factors of n is maintained by incrementing the
AtomicInteger object cnt. After all child tasks complete, the total
value of cnt is returned. Note that AtomicInteger here is not the
same class as in the Java standard library, but could be implemented
as a wrapper for that class, containing the annotations discussed be-
low to integrate it into the HJd system.

The reason that countFactors() is deterministic is that the only
operations which run in parallel — other than primitive operations
such as integer modulus and comparison with 0, which are obvi-
ously commutative — are calls to the increment() method of the
AtomicInteger object cnt. If this method is implemented correctly,
then it should commute with itself. Of course, verifying such con-
current properties is a difficult and complex task, and beyond the
scope of this paper.

2 We use the term “task” instead of “thread” to distinguish potential paral-
lelism from OS threads that may be used to implement this parallelism.

Instead, HJd considers the AtomicInteger class to be a concur-
rent library class that has been implemented and verified indepen-
dently. Note that any approach can be used for this verification.
HJd views objects and methods of the concurrent library classes
as primitives, trusting that they are correct. Given this correctness,
HJd can then guarantee that programs built on top of such library
classes are deterministic. All that is needed is for the library writer
to give a commutativity specification of which methods in the li-
brary commute.

An example of a commutativity specification for the
AtomicInteger class is given in the bottom half of Figure 1, start-
ing at line 13. Commutativity specifications are given as Java an-
notations. The first of these is the @ClassCommSets annotation on
a concurrent library class, which gives a list of names of commu-
tativity sets for the class. A commutativity set is a set of methods
in the class that all commute with each other, when called on the
same object. Each method of a concurrent library class can then be
annotated with the @CommSets annotation, specifying which com-
mutativity sets it belongs to.

The AtomicInteger class has two sets, called "read" and
"modify". "read" set contains the get() method and "modify"

contains the increment() and decrement() methods. Intuitively,
this means that an AtomicInteger can be read by multiple tasks
in parallel, or it can be incremented and/or decremented in paral-
lel, but, for example, an increment cannot happen in parallel with
a read since the former could influence the result of the latter. The
initValue() method, which returns the integer used to initialize
the AtomicInteger, commutes with reads, increments, and decre-
ments, so it belongs to both the "read" and "modify" commuta-
tivity sets. The incrementAndGet() method, in contrast, does not
commute with itself or any of the other methods, and thus does not
have a @CommSets annotation.

Two more examples of commutativity specifications are given
in Figure 2, both of which define atomic blocking FIFO queues.
The first, AtomicQueue, contains two methods, add() and remove(),
for inserting into and removing from the queue. These methods
commute with each other because, intuitively, objects will get re-
moved in the same order no matter how inserts and removes are
interleaved with each other, since remove() is blocking. Thus the
methods are annotated as belonging to the same commutativity set,
"modify". The add() method, however, does not commute with it-
self, since swapping the order of two calls to add() changes the
order of elements in the queue. Similarly, remove() does not com-
mute with itself either. Thus, both of these are annotated with
@Irreflexive, meaning that the “commutes-with” relation is not
reflexive for these methods.

Because add() is marked as @Irreflexive, the AtomicQueue

class cannot accommodate worklist-based algorithms, where mul-
tiple producers insert “units of work” onto the same worklist in
parallel. Worklist-based algorithms, however, are (usually) deter-
ministic, because they do not depend on the order in which the
units of work are added: the same, deterministic consumer proce-
dure is run on each unit of work added, irrespective of the order in
which they are processed. To capture this common parallel pattern,
Figure 2 additionally defines the AtomicWorklist class. This class
omits the explicit remove() method; instead, the caller must sup-
ply a single Handler object that will process each object added to
the worklist, possibly in parallel. HJd will ensure that the handle

method of any user-supplied Handler object can be called in paral-
lel. In turn, the AtomicWorklist class can then guarantee that calls
to add() commute with each other. Setting the handler, however,
does not commute with any other operations.

As a special case, past work on ensuring race-freedom [22, 23]
can be captured in HJd by viewing field reads and writes for
“normal objects” (i.e., objects that do not belong to concurrent

1 @ClassCommSets{"modify"}
2 f i n a l c l a s s AtomicQueue {
3 @CommSets{"modify"} @Irreflexive
4 v o i d add (Object o) { ... }
5

6 @CommSets{"modify"} @Irreflexive
7 Object remove () { ... }
8 }
9

10 @ClassCommSets{"modify"}
11 f i n a l c l a s s AtomicWorklist {
12 i n t e r f a c e Handler () {
13 v o i d handle (Object o); }
14

15 @CommSets{"modify"}
16 v o i d add (Object o) { ... }
17

18 v o i d setHandler (Handler h) { ... }
19 }

Figure 2. Commutativity Specifications for Two Atomic Queues

library classes) as methods with commutativity set specifications.
Intuitively, field reads commute with each other, while field writes
do not commute with reads or with other writes. To model this
commutativity behavior, all user objects in HJd implicitly have one
commutativity set, "fieldRead", that contains all field reads. Field
writes do not belong to any commutativity sets, in a manner similar
to the incrementAndGet() method of Figure 1.

Note that direct field accesses to commutative library objects are
disallowed for user-level code, as such fields are assumed to be part
of the internals of the commutative library objects. Access to such
fields can easily be provided by the library itself, however, using
getter and setter methods, which can additionally be annotated with
commutativity sets as necessary.

3. Language-Based Determinism-Checking
To check that only commutative methods are called in parallel,
HJd extends a construct called a permission region introduced in
previous work [22, 23]. Permission regions have the form

1 p e r m i t method(x) { ... }

where x is a variable and method is any method that can be called
on x. This construct communicates to the runtime system of HJd
that the code inside the curly braces should only be run if the
current task is permitted to run method method on x; i.e., no other
tasks could possibly call any methods on x that do not commute
with method. To determine whether the current task can safely
be given this permission, the runtime system performs a dynamic
check, as described in Section 4. If the check succeeds, then code
inside the curly braces is executed. Otherwise, the check fails,
and an exception is thrown, indicating that some other permission
region could potentially happen in parallel which allows methods
to be called on x that do not commute with method.

Permission regions are not method-specific, but instead take
into account the commutativity sets of the specified method. Specif-
ically, any method belonging to at least all of the commutativity
sets that method belongs to can also be called in a permission
region for method. For example, if x is an AtomicInteger, then
the permission region permit increment(x) allows increment(),
decrement(), and initValue() to be called on x, since the set of
commutativity sets for each of these methods is a superset of those
for increment(). For a method with no commutativity set annota-
tions, such as incrementAndGet(), all methods are allowed, since
such a method can only be called if no other task accesses the given
object at all.

1 c l a s s CountFactors {
2 v o i d countFactors (AtomicInteger cnt ,
3 i n t n) {
4 f i n i s h { f o r (i n t i = 2; i < n; ++i)
5 a s y n c { i f (n % i == 0)
6 p e r m i t increment(cnt) {
7 cnt.increment (); } } }
8 }
9

10 v o i d foo (AtomicInteger cnt) {
11 p e r m i t set(cnt) { cnt.set (0); }
12 countFactors (cnt , K);
13 i n t res; p e r m i t get(cnt) {
14 res = cnt.get (); } }
15 }

Figure 3. Example of HJd Permission Region Insertion

Permission regions are inserted by the HJd compiler where
necessary, in order to ensure that a task always has permission
to call a concurrent library method whenever such a call takes
place. The goal of the insertion algorithm is to insert permissions
regions in a manner that minimizes spurious failures, i.e., failures
that have to do with where the regions are placed rather than with
non-determinism in the underlying program. Note that users can
fix such failures manually, by explicitly adding permissions to their
code. This is a central benefit of making permission regions a
construct in the language, as opposed to approaches like dynamic
race detection, where checks are inserted into the code by the
compiler with no chance for user involvement. A good insertion
algorithm, however, will not require any such manual fixes, thereby
increasing programmer productivity.

In previous work [22, 23], we showed that for preventing data-
races, the best approach to inserting permissions regions is to add
permission regions around variable scopes. This essentially creates
regions of code that are as large as possible during which the
current task holds permissions to the given object. This approach
captures the intuition that programmers do not expect the contents
of variables to be modified while they are in scope. This approach
was experimentally validated on HJ benchmarks written without
permissions in mind: for 11 HJ benchmarks totaling over 9,000
lines of code, only one modification was needed to prevent false
positives.

For concurrent library objects, in contrast, our approach is to in-
sert regions that are as small as possible, i.e., around each method
call that requires concurrent library object permissions. As an ex-
ample, consider the code in Figure 3. This is a slightly modified
version of the countFactors() method of Figure 1 that takes cnt

as an argument, along with a method foo() that sets cnt to 0, calls
countFactors() with some K, and then reads the result from cnt.
The permission regions in this code show how the HJd insertion
algorithm works: each call to set(), get(), and increment() is
directly inside a permission region to acquire permissions for the
call. If, for example, either the set() or get() regions for the cnt

object in foo() were any bigger, however, they would require the
caller of foo() to hold permissions to call get() or set(), respec-
tively, while countFactors() executed, which would not allow any
of the child tasks spawned by this method to get permission to call
increment().

4. Dynamically Verifying Determinism
The Dynamic Program Structure Tree (DPST), introduced by Ra-
man et al. [19], is a simple yet powerful run-time data-structure that
allows the dynamic parallelism of a structured parallel program to
be efficiently recorded and used for determining happens-before re-

1 f i n i s h {
2 p e r m i t increment(x) {
3 a s y n c { S1; }}
4 a s y n c {
5 p e r m i t get(x) { S2; }
6 }
7 p e r m i t increment(x) {
8 S3;
9 }}

(a) Example Program

F

P1 A2

P2

P3

A1

S1 S2

S3

(b) Resulting DPST

Figure 4. An Example Program and its DPST

lation. Intuitively, the DPST of a program execution is an ordered
rooted tree containing an internal node for each async and finish
instance and a leaf node for each statement instance3 in that execu-
tion. HJd implements permission regions by performing dynamic
checks for happens-before on a modified version of the DPST that
contains nodes for every permission region in the program in addi-
tion to the nodes for async, finish, and statement instances.

An interesting and powerful insight is that the DPST of a de-
terministic parallel program is also deterministic, meaning that its
form for a given input is independent of the order in which tasks
are executed. For HJd, the determinism of DPST means that the
dynamic checks used to implement permission regions capture any
potential non-determinism regardless of the actual task schedule of
a particular run. In addition, the structure of the DPST ensures that
both construction and queries of the DPST can happen without syn-
chronization, leading to a very efficient implementation of dynamic
permission checks.

We explain the DPST, as used in HJd, with the example of
Figure 4. Figure 4(a) gives a small code fragment that uses variable
x, assumed to be an AtomicInteger as defined in Figure 1. The
outer-most construct is a finish, which contains, in sequence: a
permission region for increment() containing async, which itself
contains some statement S1; an async which contains a permission
region for get() that performs S2; and, finally, a second permission
region for increment() containing S3.

The DPST for this example is shown in Figure 4(b). DPSTs in
HJd contain nodes for each async, finish, and permission region.
The outer-most finish of the example becomes the top-most node
of the tree, which is labeled F. The first permission region, which
becomes the left-most child of F, is labeled P1, and has the first
async as a child, labeled A1, with child S1. The second async
becomes the second child of F, labeled A2, whose child is the
second permission region, labeled P2, which has child S2. Finally,
the last permission region becomes the third child of F, labeled P3,
which has child S3.

Intuitively, node P2 potentially conflicts with both P1 and P3,
since P2 acquires permission to call get() while P1 and P3 acquire
permission to call increment(). To check whether these potential
conflicts could lead to nondeterminism, the system must determine
whether P2 could happen in parallel with either P1 or P3, i.e.,
whether there do not exist happens-before edges between P2 and
each of P1 and P3.

We extend the may-happen-in-parallel algorithm from [19] to
test whether one of two nodes, N and N ′, happens-before the other
using the DPST. The first step is to determine the least common
ancestor (LCA) A of N and N ′ on the DPST. If A is the node
N itself, then N ′ occurs inside the scope of N , which leads to a
conflict iff N and N ′ are in different tasks. This can be determined
by examining the path from N to N ′: the two are in different tasks

3 DPST is defined with step instances as leaves in [19], but the same
concepts apply to statement instances as well.

1 DoubleTaskNode get$$node;
2 DoubleTaskNode increment$$node;
3 DoubleTaskNode initValue$$node;
4 TaskNode private$$node;
5 b o o l e a n exclusive$$held;
6 TaskNode exclusive$$node;
7 AtomicLong start$$version , end$$version;

Figure 5. Additional DPST-Related Fields for the AtomicInteger

Class of Figure 1

iff there is an async node along this path. The case for A being
the node N ′ is similar. If A is neither of the two nodes N and N ′,
the path from A to the left-most of N or N ′ is examined, and N
happens in parallel to N ′ iff the first non-permission-region node
on this path is an async. Otherwise, the left-most of N and N ′

happens before the right-most.
In order to implement a quick lookup of the permission regions

that could potentially conflict with a given permission region, each
object stores the permission regions that have succeeded in obtain-
ing permissions to it. Of course, it would be impractical for an ob-
ject to store every permission region that succeeded in acquiring
a permission on it. Instead, objects only store a set of one or two
permission nodes that cover the different permissions which can
be acquired. The definition of covering, along with an adaptation
of the theorem of Raman et al. [19] that a covering is sufficient to
perform happens-before checks, are given as follows:

DEFINITION 1 (DPST Node Covering). Let S be a set of DPST
nodes (assumed to be in the same DPST). The singleton set {n}
of DPST node n is said to cover S iff each node in S, other than
n, happens before n. The two-element set {n1, n2} covers S iff,
for each n ∈ S, either n happens before one of n1 and n2, or
LCA(n, ni) is a descendant of or equal to LCA(n1, n2) for each
i ∈ {1, 2}.

THEOREM 1. Let S and S′ be any sets of DPST nodes such that
S′ covers S, and let n be any node not in S. If n does not happen
before any node of S, then for all nodes m ∈ S, m happens before
n iff all nodes m′ ∈ S′ happen before n.

Concurrent library classes are processed by the HJd compiler
in order to add fields to track successful permission regions us-
ing coverings. The default root object, hj.lang.Object, is pro-
cessed in a similar manner to track permission regions for field
reads and writes by treating these as methods, as discussed in Sec-
tion 2. To do this processing, the compiler first groups together all
methods with the same commutativity sets that are not marked as
@Irreflexive. For example, both increment() and decrement()

in AtomicInteger belong to the same group, but the add() and
remove() of the AtomicQueue class of Figure 2 do not. For each
such group, the compiler adds a DoubleTaskNode field to the class,
which maintains a covering of one or two DPST nodes for the the
successful permission regions for any of the methods in the group.
The compiler then adds a TaskNode field for each @Irreflexive

method to maintain a covering of at most one DPST node; intu-
itively, only a single DPST node is needed because permission re-
gions for an @Irreflexive method cannot happen in parallel. This
process is illustrated in Figure 5, which shows the three compiler-
inserted DoubleTaskNode fields for AtomicInteger. Each is named
after the first method in its group, and includes $$ to mark the fields
as machine-generated and not user-accessible.

The compiler also adds five additional fields to every class.
The first, private$$node, is a TaskNode field to track permis-
sion regions for methods not in any commutativity sets, such as
getAndIncrement(). Such methods intuitively represent “private”

Name Suite Library Classes
health BOTS priority queue

floorplan BOTS min-accumulator, atomic integer
nqueens BOTS atomic integer

breadthFirstSearch PBBS worklist, min-accumulator
dictionary PBBS deterministic hash table

PriorityQueue HJ priority queue

Table 1. Benchmarks

permissions to use the object in any task-local manner. The next
two, exclusive$$held and exclusive$$node, are a TaskNode and
a boolean flag to track exclusive acquires and releases: if the flag
is true, then exclusive permissions are currently being held on the
object, and exclusive$$held stores the node where exclusive per-
missions were acquired; otherwise, the stored node indicates where
exclusive permissions were released.

The final two fields added by the compiler, start$$version and
end$$version, are AtomicLong objects used to implement Leslie
Lamport’s solution to the reader-writer problem [15]. This allows
the DPST-related fields of an object to be examined and updated
without using locks, thereby avoiding any potential blocking. See
Lamport’s paper, or Raman’s thesis [18] for more details.

5. Results
We evaluated the performance impact of dynamic checks imple-
mented using Dynamic Program Structure Tree in HJd. The bench-
marks we used are listed in Table 1, including three OpenMP 3.0
BOTS benchmarks [11], two PBBS benchmarks [3], and one HJ
priority queue micro-benchmark. All but the last were not origi-
nally written in Java; our versions are our interpretations of how to
port these benchmarks to HJ. The main goal was to cover a number
of common parallel library classes, including: the AtomicInteger

class of Figure 1; a minimizing accumulator, that tracks the min-
imum value sent to it in parallel; AtomicWorklist of Figure 2; a
priority queue version of AtomicQueue from Figure 2, where add()

commutes with itself because the list is always sorted; and a deter-
ministic hash-table.

We implemented HJd as an extension to the HJ compiler [9].
We ran our benchmarks on a 16-core (4 socket, 4 core per socket)
Intel Xeon 2.4GHz system with 30GB of memory, running Red Hat
Linux (RHEL 5) and Sun JDK 1.6 (64-bit). The JVM heap size was
set to 6GB. The results obtained are given in Figure 6 as slowdowns
relative to running the benchmark with no dynamic checks at all.
For each benchmark, we also evaluated the performance impact of
just the dynamic checks needed for the parallel library calls, and
omitted the checks that would be inserted by our past work [23] to
ensure race-freedom, e.g., that no user-defined object was written
in parallel to being read. This was done to measure the performance
overhead for parallel library classes, and to evaluate how well our
approach would work as, for example, a debugging tool that just
checks whether parallel library classes are called correctly. The
results that check just the library classes are marked “partial” in
Figure 6, while the full checks are marked as “full”. The versions
of the benchmarks with dynamic checks show similar scalability
as the uninstrumented versions, with an average (geometric mean)
overhead of 1.26× for the “full” case and 1.15× for the “partial”
case on 16 cores. This is much lower overhead than even the fastest
modern parallel dynamic race detectors, which generally exhibit
slowdowns of at least 2-4× on 16 cores [19].

6. Related Work
There has been much work on dynamic checking of determinism
(e.g., [1, 2, 17]). Kendo [17] provides a software-only system that

provides deterministic multithreading of parallel applications. It
enforces a deterministic interleaving of local acquisitions. To use
this system, user need to convert parallel program to use Kendo
APIs that perform runtime verification. Grace [2] also introduced
a software-only runtime system that eliminates concurrency errors
for fork-join based parallelism. It employs a novel virtual mem-
ory based software transactional memory to impose a sequential
commit protocol, thus reduces user effort for converting original
programs. In [1], Bergan et.al developed a compiler and runtime
infrastructure that ensures determinism but resorts to serialization
rarely, for handling inter-thread communication and synchroniza-
tions. It relies on compiler transformation to perform code instruc-
tion and redundancy optimizations.

There has also been a number of purely static approaches to
ensuring determinism in the literature. Deterministic Parallel Java
(DPJ) [4, 5] uses an effect type system to statically compute the
memory accesses of a piece of code. Two pieces of code can run
in parallel in DPJ only if their effects are guaranteed not to inter-
fere with each other, i.e., neither can write to memory that the other
might access. To summarize effects in types, DPJ uses an abstrac-
tion called memory regions, which give a logical tree-based struc-
ture to memory that mirrors tree-structured object graphs, allowing
parallel tree traversals. Further, DPJ also contains a commutative
annotation, that allows programmers to specify functions, much
like our library methods, that are self-commutative. Unfortunately,
tree-based memory regions make it difficult to parallelize access to
object graphs that are not a tree, nor can it support objects moving
around in an object graph, i.e., if the object graph changes dynam-
ically. HJd, in contrast, can handle very complex parallel patterns
by falling back on dynamic checks. It is unclear if effect-based type
systems could be extended to support dynamic checks in this way.

There has also been much work on permission type systems
to ensure the weaker guarantee of race-freedom. Permissions are
closely related to linear type systems, which ensure that resources
are not duplicated or deleted when doing so is disallowed. A num-
ber of systems for avoiding races have been based on linear types,
since only one task can have permission on a linear pointer at a
time. Haller and Odersky [13] describe one such system, Scala ca-
pabilities. A major breakthrough was Boyland’s work on fractional
permissions [8], which showed how a linear read/write permission
could be split into fractional read permissions.

HJd seems to be the first system to use permissions to ensure
determinism, rather than just race-freedom. The main difference
from previous permissions-based approaches is the idea of having
different “ways” to split an exclusive permission, e.g., into either
increment() or get() permissions, but not both. Our previous
work [23] showed that this property is also key for gradual typing
with permissions.

7. Conclusion
In this paper, we have introduced HJd, a compiler and runtime sys-
tem that guarantees determinism. Rather than focus on determin-
ism of high-performance parallel libraries, as much of past work
has done, HJd instead focuses on ensuring that application code
only calls such libraries in a manner that meets their concurrency
specifications. These specifications are given with a new concept
called commutativity sets, that capture which methods in a library
class commute. HJd performs dynamic checks based on these com-
mutativity sets annotations to guarantee that methods which do not
commute are not called in parallel. In order to implement these dy-
namic checks efficiently, HJd extends the Dynamic Program Struc-
ture Tree (DPST) of Raman et al. [19]. The practicality of HJd has
been validated with a suite of benchmarks, showing that not only
can this approach handle a number of useful parallel library classes,

0.6$

0.8$

1$

1.2$

1.4$

1.6$

1.8$

2$

2.2$

full$ par/al$ full$ par/al$ full$ par/al$ full$ par/al$ full$ par/al$ full$ par/al$ full$ par/al$

health$ floorplan$ nqueens$ parallel8bfs$ priorityqueue$ dic/onary$ GeoMean$

1$ 2$ 4$ 8$ 16$

sl
ow

do
w
n

Figure 6. Benchmark slowdowns relative to running with no dynamic checks for 1, 2, 4, 8, and 16 cores

but also that, even with no user-supplied permission annotations,
the overhead of dynamic permission checks is only around 1.26×.

References
[1] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan

Grossman. Coredet: a compiler and runtime system for deterministic
multithreaded execution. In ASPLOS, 2010.

[2] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace:
safe multithreaded programming for c/c++. In Proceedings of OOP-
SLA ’09, 2009.

[3] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian
Shun. Internally deterministic parallel algorithms can be fast. In
PPOPP’12, pages 181–192, 2012.

[4] Robert L. Bocchino et al. A type and effect system for deterministic
parallel java. In OOPSLA’09, 2009.

[5] Robert L. Bocchino et al. Safe nondeterminism in a deterministic-by-
default parallel language. In POPL’11, 2011.

[6] Robert L. Bocchino, Jr., Vikram S. Adve, Sarita V. Adve, and Marc
Snir. Parallel programming must be deterministic by default. In Pro-
ceedings of the First USENIX conference on Hot topics in parallelism
(HotPar), 2009.

[7] Hans-J. Boehm and Sarita V. Adve. Foundations of the c++ concur-
rency memory model. In PLDI, 2008.

[8] John Boyland. Checking interference with fractional permissions. In
SAS ’03, 2003.

[9] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar.
Habanero-java: the new adventures of old X10. In PPPJ, 2011.

[10] Robert Colvin, Lindsay Groves, Victor Luchangco, and Mark Moir.
Formal verification of a lazy concurrent list-based set algorithm. In
Proceedings of the 18th international conference on Computer Aided
Verification (CAV), 2006.

[11] Alejandro Duran et al. Barcelona OpenMP Tasks Suite: a set of
benchmarks targeting the exploitation of task parallelism in OpenMP˙
In ICPP’09, 2009.

[12] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. A calculus of atomic
actions. In POPL, 2009.

[13] Philipp Haller and Martin Odersky. Capabilities for uniqueness and
borrowing. In ECOOP ’10, 2010.

[14] Ming Kawaguchi, Patrick Rondon, Alexander Bakst, and Ranjit Jhala.
Deterministic parallelism via liquid effects. In PLDI’12, 2012.

[15] Leslie Lamport. Concurrent reading and writing. Commun. ACM,
20(11), 1977.

[16] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory
model. In POPL ’05, 2005.

[17] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo:
efficient deterministic multithreading in software. SIGPLAN Not.,
44(3), 2009.

[18] Raghavan Raman. Dynamic Data Race Detection for Structured
Parallelism. PhD thesis, Rice University, 2012.

[19] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and
Eran Yahav. Scalable and precise dynamic datarace detection for
structured parallelism. In PLDI, 2012.

[20] Guy L. Steele, Jr. Making asynchronous parallelism safe for the world.
In POPL, 1990.

[21] Viktor Vafeiadis. Shape-value abstraction for verifying linearizability.
In Proceedings of the 10th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI), 2009.

[22] Edwin Westbrook, Jisheng Zhao, Zoran Budimlić, and Vivek Sarkar.
Permission regions for race-free parallelism. In RV’11, 2011.

[23] Edwin Westbrook, Jisheng Zhao, Zoran Budimlić, and Vivek Sarkar.
Practical permissions for race-free parallelism. In ECOOP, 2012.

[24] Jie Yu and Satish Narayanasamy. A case for an interleaving con-
strained shared-memory multi-processor. SIGARCH Comput. Archit.
News, 37(3), 2009.

