
Lockout: Efficient Testing for Deadlock Bugs

Ali Kheradmand
∗

School of Computer and
Communication Sciences

École polytechnique fédérale
de Lausanne

a.i.kheradmand@gmail.com

Baris Kasikci
School of Computer and
Communication Sciences

École polytechnique fédérale
de Lausanne

baris.kasikci@epfl.ch

George Candea
School of Computer and
Communication Sciences

École polytechnique fédérale
de Lausanne

george.candea@epfl.ch

ABSTRACT

Deadlocks are hard to find via traditional testing, and they
manifest rarely during program execution. We introduce
Lockout, a technique and a tool that increases the proba-
bility of deadlock manifestation in multithreaded programs,
while preserving the program semantics and requiring no
perturbation to the runtime and the testing infrastructure.
Lockout produces binaries that are more prone to deadlock
compared to native binaries. We evaluated Lockout on a
suite of multithreaded programs, and preliminary results
show that it is effective in increasing the deadlock proba-
bility.

1. INTRODUCTION
A deadlock is a condition under which the progress of a

program is halted, because each thread in a given set of
threads attempts to acquire a lock already held by another
thread in the set [26]. Deadlocks are hard to identify by
manual code inspection and occur only in rare cases among
an exponential number of thread interleavings a program
may have; consequently, deadlocks may not easily manifest
via traditional testing.
A number of mechanisms have been developed to aid de-

velopers in deadlock detection. Static deadlock detectors [9,
24, 26] attempt to detect possible deadlocks by analyzing
the program’s source code. Such detectors impose no run-
time overhead or interference on the normal execution of
programs. However, they tend to report many false posi-
tives, each of which could take a considerable amount of the
developers’ time only to verify manually.
Dynamic deadlock detectors [2, 3, 17, 20] try to detect

deadlocks by monitoring the program during execution or
by analyzing a trace of the program after its execution. Dy-
namic detectors operate on feasible program paths and are
more accurate in terms of pointer aliasing information [9]
than static detectors. Still, dynamic detectors report both
false negatives and false positives, and they typically impose
high runtime overhead on the running program.
Model checkers [4, 7, 11] systemically explore the state

space of the program in order to find deadlocks. While they
report no false positives, the state space explosion prob-
lem [6] and the need for the abstract specification of the
system under test [9] limit their application to relatively
small programs.
Deterministic execution and reachability testing techniques

∗This work was done while the author was a summer intern
at EPFL in 2013

[23, 13, 19] aim to systemically explore a program’s thread
interleavings to find deadlocks. These tools do not report
false positives, however, they only function properly if non-
determinism is in thread scheduling and not in other exter-
nal events (e.g., inputs). For example CHESS [23] cleans the
state of memory before each run, and logs and replays the
values returned by the functions that read the current time
and generate random numbers.

We present a tool called Lockout that increases the prob-
ability of deadlock occurrence in multithreaded programs,
while preserving program semantics and requiring no per-
turbation to the runtime and test infrastructure. Lockout
takes the source code of a program, and it produces a binary
(similar to the native binary) that is more prone to dead-
lock at runtime. This way, more deadlocks can be detected,
using the same test suite.
There are several challenges to be addressed when design-

ing such a tool. Ideally, such an approach should have
minimum perturbation to the target program’s execution,
with the only difference being an increased probability of
a deadlock. To achieve this, Lockout should not change
program semantics and also impose low runtime overhead.
In addition, Lockout’s actions should not cause any unreal
deadlocks or starvation. Furthermore, the ideal approach
should not be dependent on the characteristics of a single
execution of the program and work in the face of input non-
determinism. Finally, some deadlocks happen because of
data races. In such cases, data races can influence the lock-
ing order of a program. For example, if the result of a branch
depends on a racy variable, the race may change the ex-
pected outcome of the branch and consequently the locking
order, which in turn may result in a deadlock.
We attempt to address the aforementioned challenges with

Lockout. By preempting threads before lock acquisitions
and some memory accesses, we affect thread scheduling to
produce interleavings that are more likely to deadlock. Even
though we change the program’s binary, the results of these
changes are limited to effects on the program’s scheduling
and do not alter the program’s semantics.
Lockout collects information about lock acquisition order

during program execution and preserves it across different
executions. Then, Lockout modifies the program schedule
based on this information that is not directly dependent on
a single execution and input. Therefore, Lockout is able
to perform just as well under input non-determinism. This
feature is likely important in interactive programs which in-
troduce a lot of non-determinism through the inputs. In
addition, applying preemptions before racing memory ac-
cesses could increase the probability of encountering data

Lockout

thread 2

thread 3

thread 1

E
x
e

c
u

te

Interference

Engine

std::cout

<<

“Hello,

World!

\n”;

Instrumentor
001001010

100101001

010101011

00111000

Runtime Monitor

Interference

Algorithm

Events

Static Phase
Source

Code

Instrumented

Binary

Dynamic

Phase

Static

Analysis

thread 2

thread 3

thread 1

Actions

thread n

.

.

.

Figure 1: Lockout’s Architecture.

race dependent deadlocks during the program’s execution.
In the rest we describe the design of Lockout (§2) and its

implementation (§3), evaluate it (§4), discuss the limitations
(§5) and related work (§6), and finally conclude (§7).

2. DESIGN
Figure 1 depicts the architecture of Lockout. Lockout

works in two phases. In the static phase, its instrumentor
takes the program’s source code and produces an instru-
mented program binary (§2.1). In the dynamic phase, Lock-
out’s Interference Engine (IE) gathers information about the
program’s locking behavior (§2.2), and at certain points dur-
ing the program’s execution, IE uses this information to de-
cide whether to interfere with the scheduling or not (§2.3).

2.1 Producing Target Binary

The instrumentor instruments the program’s binary at
specific locations including lock acquisition and release calls
and memory accesses. This instrumentation is later used by
IE to gather information about the locking behavior of the
program and to interfere with the thread scheduling. Lock-
out selects appropriate instrumentation locations depending
on the interference algorithm it uses (more in §2.3).
During the static phase, Lockout may also run static analy-

ses on the target source code to produce information which
may come in handy later in the dynamic phase. For ex-
ample, Lockout can run a static deadlock detector to find
potential deadlocks. IE may use this information when in-
terfering with the thread schedule. Also, Lockout can use
static data race detection to detect potential data races, and
use this information to reduce the number of memory access
instrumentation. Generally, static analysis can assist in re-
ducing the runtime overhead at the cost of losing accuracy.
However, in our early prototype of Lockout, we do not use
any static analysis.

2.2 Capturing the Program Behavior

When the target program is executed, IE gathers infor-
mation about the execution by keeping track of the threads
and the locks that they hold. It also keeps a directed graph
that we call the runtime lock order graph (RLOG). In this
graph, each node represents a lock. We put a directed edge
E from node N1 to node N2 if a thread T with a current
lockset (i.e locks being held by T) S that contains N1, at-
tempts to acquire N2.
E can potentially contain various information about the

particular event that caused the edge to appear such as the
number of edges between N1 and N2. This can give an
estimate (albeit not always accurate) of the likelihood of
occurrence of such an acquisition order. IE may use this
information for more effective preemptions. In the current
implementation, Lockout establishes an edge with no extra
information once a thread acquires N2 after acquiring N1.
When the program ends, IE stores the RLOG in non-

volatile memory. At the beginning of each run, IE loads the
previously stored RLOG and continues updating it. This
approach has a number of benefits. First, IE has enough
information to start interference at the beginning of each
run. Second, it can capture more information about the
program’s locking behavior as the program follows different
flows in different executions, each execution capturing part
of the entire locking behavior. Finally, after enhancing the
RLOG for a sufficient number of runs, the IE could use any
anomaly (e.g a brand new edge between two nodes) as a
sign of a potential deadlock. An anomaly might be a rare
correct behavior, in which case the algorithm only causes
(rare) performance overhead.
The RLOG can also be built using static analysis. How-

ever, this option might be less accurate as static analysis is
usually inaccurate in determining feasible paths and more
importantly pointer aliasing information [9].

2.3 Deciding How to Interfere

To deadlock a program, Lockout should make a set of
threads circularly wait for each other. To do this, Lock-
out needs to limit the number of locks a thread can acquire.
Otherwise, a thread is likely to acquire all the locks it needs,
do its job, and release all the locks; making those locks avail-
able for other threads that wait for them, and thus, diminish
the chance of a deadlock. To prevent this, we try not to let
threads acquire all the locks they need by interfering with
scheduling. This way, threads acquire part of the locks they
need, and the rest can be acquired by other threads.
Deciding when and how to interfere with scheduling is the

most important functionality of Lockout. Before each lock
acquisition attempt by any thread, IE decides either to let
the thread acquire the lock, or delay the thread before let-
ting it acquire the lock. IE also decides on how long to delay
an acquisition. We implemented three different algorithms
which differ in terms of their interference rate, effectiveness
and run time overhead. The algorithms are elaborated in
the following subsections.

2.3.1 Simple Preemption

In this algorithm, we aim for low overhead. The instru-
mentor instruments the program before all lock acquisitions
and after all lock releases. IE does not create and preserve
the RLOG, because the algorithm does not use it; it simply
preempts any thread exactly before trying to acquire a lock
and exactly after releasing the lock.

Preemption

S

P

T
1

(a)

R

No

Deadlock
Deadlock

S

P

T
1

(b)

No

Deadlock
Deadlock

R

T 1
 a

cc
es

se
s

R
 fi

rs
t T

2 a
cce

sse
s R

 first T 1
 a

cc
es

se
s

R
 fi

rs
t

T
2 a

cce
sse

s R
 first

Figure 2: Data race dependent deadlocks involving one data

race.

By preempting threads before acquisition of each lock, we
make sure that a thread (T1) relinquishes the CPU before
acquiring two locks (l1 and l2) in a row. This way, another
thread (T2) may get a chance to acquire l2, making T1 which
already holds some locks, wait for T2 to release l2. T2 may
wait for a third thread in a similar way and so on... Even-
tually, this may lead to threads circularly waiting for each
other, and cause a deadlock.

Data races may change the locking order in the program
and eventually lead to a deadlock. The reason for preempt-
ing threads after lock releases is to target a subset of such
deadlocks. More precisely, we target changes that are caused
by a single data race between two threads.
Fig. 2a shows a data race between memory accesses in two

threads (T1 and T2). If T1 accesses the racy memory be-
fore T2, then there is no deadlock; but if T2 accesses it first,
locking order changes and the program might deadlock. We
assume that normally T1 has higher chances to access the
memory first, otherwise the normal program is already likely
to deadlock with high probability. Consider the beginning
of the racy region for T1 (S) where the intersection of the
locksets of T1 and T2 is empty. Also, consider the racy mem-
ory access (R) and the path that T1 takes from S to R (P).
There is probably no instruction along P that causes T1 to
relinquish the CPU since otherwise T2 could more often have
the chance to acquire the CPU and access the memory be-
fore T1. For the same reason, S and R probably have spatial
locality. To make T2 more likely to access the memory be-
fore T1, we can preempt T1 somewhere along P (Fig. 2b).
In this algorithm, Lockout preempts T1 right after S.

Figure 3a shows an example for which this approach is
effective. Assume T1 only holds the lock l and runs concur-
rently with T2. There is a data race between the write in
T1 and the read in T2. This data race may cause a dead-
lock if the read executes before the write. However, T2 does
not usually have the chance to execute the read before T1

executes the write and a deadlock does not happen. By pre-
empting T1 after the unlock (Fig. 3b), we boost the proba-
bility of the deadlock. This approach is not as effective if
the change in the locking behavior is dependent on affect-
ing more than one racy variable between two threads. We
address such situations (with higher overhead) in §2.3.3.

2.3.2 Targeted Deadlock Induction

This algorithm chooses a specific potential deadlock and
tries to rise its probability of manifestation. The instrumen-

 Thread 1 Thread 2

...

unlock(l);

write(a, 1);

...

 lock(l);

 v = read(a);

 if(v == 1)

 //no deadlock

 else

 //deadlock

TimeTime

(a)
 Thread 1 Thread 2

...

unlock(l);

preempt();

...

 lock(l);

 v = read(a);

 if(v == 1)

 //no deadlock

 else

 //deadlock

write(a,1);

(b)

Figure 3: Example of a data race dependent deadlock.

tor instruments all lock acquisition and release calls (before
and after) for IE’s use. IE keeps track of the RLOG.
Each directed loop in the RLOG corresponds to a potential

deadlock. Consider a directed loop N1 → N2 → ... → Nn →

N1. As mentioned earlier, each edge Ni → Nj means there
might exist a thread in the program that after acquisition
of Ni, acquires Nj . By preventing the thread Ti currently
holding Ni from acquiring Nj , hopefully a thread Tj may ac-
quire Nj ; making Ti dependent on Tj and eventually, with
a circular dependency, a deadlock may happen.
The algorithm chooses a specific directed loop in the graph

at the beginning of the execution (assuming information
from previous runs exists) and tries to make threads circu-
larly dependent on each other. This is done by delaying any
thread holding at least one lock from the loop just before
attempting to acquire another lock from the loop. Delay
time is dependent on the size of the loop. The algorithm
adds a random delay to prevent a common delay from not
affecting the schedule at all.
We implemented this algorithm, but did not test it, as it

evolved into the third algorithm explained below. The ini-
tial motivation for this algorithm was to statically detect po-
tential deadlocks, produce different binaries each targeting
only one or a group of potential deadlocks, and run the bi-
naries on different machines. This approach, inspired by the
RaceMob system[16], has the advantage of achieving higher
accuracy while keeping the overhead low by instrumenting
and preempting only a few locations in the binary.

2.3.3 Component Based Delays

This algorithm finds strongly connected components
(SCC) of the RLOG at the beginning of the program’s exe-
cution, and it assigns numbers to the components based on
their topological order (root is assigned 1 and so on). Af-
ter each change in the RLOG, IE updates the components
accordingly. Since any set of nodes within a strongly con-
nected component form a directed loop, this is a sign of a
potential deadlock.

The algorithm decides whether or not to delay a thread,
which previously acquired a lock lp, before acquiring a lock
lc based on the following relations among locks’ components
(Ci shows the component number of the lock i):

• If Clp < Clc , the algorithm does not delay the thread.
Since the Clc is topologically ordered after the com-
ponent of Clp , there is no directed path from lc to lp.
Therefore, making the thread holding lp wait for an-
other thread containing lc will probably not lead to a
deadlock.

• If Clp = Clc , the algorithm delays the thread because
lc and lp form a directed loop.

• If Clp > Clc , it means a new edge will be added from
lp to lc just after the thread acquires lc. It also means
the edge will be the first from lp to lc (otherwise Clp ≤

Clc). If there is a directed path from lc to lp, there is
a directed loop involving lp and lc (including the edge
that will be added after the acquisition). Therefore,
the algorithm delays the thread. If such path does
not exist, the algorithm still delays the thread since
this new edge can be a sign of an anomaly in locking
behavior and potential for a deadlock.

Deadlocks caused by locking orders will eventually create a
directed loop in the RLOG (at least when they manifest).
But SCCs are not a necessary condition for finding poten-
tial deadlocks as some edges may still have not been added
to RLOG before the deadlock manifests. However, because
deadlocks manifest in a very particular order of lock acqui-
sition, it is reasonable to assume that the edges in a real
deadlock’s directed loop will appear in the RLOG after an
adequate number of runs, and thus form an SCC. In addi-
tion, the algorithm does not only rely on SCCs as it always
preempts threads if Clp > Clc .
Each delay duration is random to prevent a common delay

from not affecting the schedule. If a thread does not have
locks in its lockset, we assign Clp = ∞ to it to prevent de-
laying the thread before acquiring its first lock.
The algorithm also preempts threads before any write ac-

cess in order to give rise to deadlocks caused by data races.
This approach is more general than the one described in §2.3.1,
as the former is only effective for cases in which the change
in the locking order is a result of a single data race. Fig-
ure 4a illustrates the situation in which several data races
(R1, R2, ..., Rn) are involved, and the lock order would be
affected only if T1 accesses R1 to Rn−1 before T2 but ac-
cesses Rn after T2. Here, unlike in §2.3.1, preempting T1

somewhere along P (Fig. 4b) would not be as effective in in-
creasing the deadlock probability as preempting it along P

′

(Fig. 4c). Currently, we preempt threads before all memory
accesses to increase the probability of T2 accessing Rn before
T1. We plan to use static analysis to detect such situations
and limit the preemption (and instrumentation) to Rn in
order to increase the deadlock probability and decrease run-
time overhead in future work.

3. IMPLEMENTATION
We implemented Lockout in nearly 1000 lines of C++

code. We targeted the Pthreads API; however, extension to
other APIs would be fairly straightforward as Lockout just
needs to know the calls to lock acquisition and release func-
tions to instrument them. The instrumentor is an LLVM [18]
pass. Lockout compiles source code into LLVM bitcode us-
ing the clang [5] compiler. We chose to use LLVM, because
we aim use LLVM static analyses like static deadlock and
data race detection in the future. After the instrumenta-
tion and static analyses (if any), Lockout links the resulting
LLVM bitcode with IE and any additional libraries to pro-
duce the final executable.
IE uses Pthreads mutexes to synchronize the threads when

accessing data it maintains such as the RLOG and current

R R
n-1

T
1
 accesses R

n
 first

S

P

T
1

(a)

R
n

No DL

Deadlock

R
1

.

.

.

T
2
 accesses R

n
 first

T
2
 accesses R

1
 first

No DL

T
2
 accesses R

n-1
 first

No DL

P’

S

P

T
1

(b)

.

.

.

P’

Preemption

S

P

T
1

(c)

R
n

R
1

.

.

.

R

P’

Preemption

R
n-1

T
1
 accesses R

n
 first

No DL

Deadlock

T
2
 accesses R

n
 first

T
2
 accesses R

1
 first

No DL

PT
2
 accesses R

n-1
 first

No DL

No DL

PreemptionPreemp

T
2
 accesses R

1
 first

Preemption

T
1
 accesses R

n
 first

No DL

Deadlock

T
2
 accesses R

n
 first

T
2
 accesses R

1
 first

No DL

T
2
 accesses R

n-1
 first

No DL

R

R
n

R
1

T
2
 acce

R
n-1

Figure 4: Data race dependent deadlocks involving more than

one data race.

Table 1: Experimental targets of Lockout. The last column

reports whether the programs include known data race dependent

deadlock bugs or not.

Program Size(LOC) #Threads Race-based
benchmark 34-226 2-4 Yes
SQLite 3.3.0 113,326 3 Yes
HawkNL 1.6b3 9,807 2 No
Pbzip2 1.1.6 4,523 4 No
httpd 2.0.65 300,140 128 No

per-thread lockset. Lockout uses pthread_yield for preemp-
tion and usleep for delays.
We could build Lockout by modifying the Pthreads APIs.

However, this would have required changes to system plat-
forms, which is intrusive and not desirable. Also, directly
changing program binaries provides a higher degree of con-
trol over other events such as memory accesses.
Our prototype is at https://github.com/kheradmand/Break.

4. EVALUATION
In this section, we answer two questions about Lockout:

How effective is it in increasing the deadlock probability
(§4.1)? How efficient is it in doing so(§4.2)?
To answer the questions, we evaluated Lockout’s perfor-

mance on on a set of real-world C/C++ programs that use
the Pthreads API. We tested SQLite, a widely deployed
database engine [25]; HawkNL, an open source, fairly low
level game-oriented network API [1]; Pbzip2, a parallel im-
plementation of the bzip2 file compressor [10]; and Apache
httpd, a popular web server [12]. We also implemented and
evaluated a microbenchmark with two locks that can poten-
tially deadlock. Table 1 summarizes the properties of the
tested programs.
The experiments were performed on an Intel Core 2 Duo

E6600 CPU with 4 GB of RAM running Ubuntu Linux
12.04. Reported results are all averages of 10 experiments.

4.1 Effectiveness

To evaluate Lockout’s effectiveness, we measured the prob-
ability of a deadlock by counting the number of successful

https://github.com/kheradmand/Break

Table 2: Effectiveness of Lockout.
Program Deadlock Probability (%)

Native SP CBD
MP LP

benchmark 0.000658 0.568414 50 50
SQLite <0.000640 4.345292 50 50
HawkNL 22.668514 63.511905 50 50
Pbzip2 <0.000001 <0.000001 <0.000001 <0.000001
httpd <0.000001 <0.000001 <0.000001 <0.000001

Table 3: Efficiency of Lockout
Program Overhead (%)

SP CBD
MP LP

Pbzip2 0.16 56.67 0.54
httpd 5.99 3303.82 20.87

runs (served requests for httpd) before any deadlock man-
ifests (N). We report 1

N+1
as the deadlock manifestation

probability. Table 2 shows the results of our evaluation.
The columns in Table 2 report the probability of a dead-
lock in different setups. The native column reports results
for native programs, the SP column reports the results for
instrumented programs using the Simple Preemption algo-
rithm (§2.3.1). The CBD column represents the Component

Based Delays algorithm (§2.3.3) with 1-3 microsecond de-
lays: the MP subcolumn represents using preemptions be-
fore writes, and the LP subcolumn represents using pre-
emptions after lock releases. We stopped our tests after
1,000,000 executions.
Lockout significantly increases the deadlock probability in

the programs with known bugs. However, it was unable to
reveal new bugs. SP made the microbenchmark, SQLite,
and HawkNL approximately 864, 6780, and 3 times more
prone to deadlock compared to normal executions, respec-
tively. CBD made the same programs always deadlock every
other execution. No algorithm could reveal any deadlocks in
Pbzip2 and httpd, but we do not know whether or not these
programs actually have any deadlocks. In our experiments,
there was no loop in the RLOG of these two programs.

4.2 Efficiency

To determine Lockout’s efficiency, we measure its run-
time overhead using the elapsed time for successful execu-
tions (request throughput for httpd) both with instrumented
and uninstrumented programs. For the microbenchmark,
SQLite, and HawkNL, programs compiled with the clang

compiler (without instrumentation) incur respectively 87%,
2727%, and 65% overhead compared to programs compiled
using gcc. However, this high overhead is actually a constant
factor, as these programs execute for less than a millisecond,
and the overhead is negligible for programs which execute
more than 100 milliseconds (e.g. Pbzip2). Therefore, we
only compare the runtime overhead for Pbzip2 and httpd.

Table 3 reports the results. SP incurs less than 6% over-
head. The overhead is due to the instrumentation and pre-
emption overheads. CBD incurs more than 3300% overhead.
The overhead is due to the instrumentation, maintaining the
locking behavior, the delays before lock acquisitions, and the

preemptions before memory accesses. Since the preemptions
before all the write memory accesses account for most of
the runtime overhead, we tested a modified version of CBD
which, similar to the SP algorithm, preempts threads after
lock releases, instead of memory accesses as these are con-
siderably fewer than the memory accesses in the programs
we tested. There was no change in the deadlock probabil-
ity. However, the runtime overhead substantially decreased.
The modified version incurs less than 21% overhead.
The overhead for httpd was approximately 37 times the

overhead for Pbzip2 for SP and the modified version of CBD.
This is due to the greater number of threads (32×) and lock
acquire/release operations in httpd compared to Pbzip2. For
the unmodified CBD, the overhead for httpd is more than
58 times the overhead for Pbzip2. For this case, in addi-
tion to the greater number of threads and lock operations,
the greater number of memory accesses contribute to the
difference in the runtime overhead.

5. DISCUSSION
The primary focus of the current work is increasing the

probability of deadlocks, therefore, in some cases, Lockout
incurs high overhead. To incur lower overhead, the Simple

Preemption algorithm, can limit the number of preemptions
to locks that are more likely to cause a deadlock. More-
over, the number of preemptions per lock or per thread can
be limited. For the Component Based Delays algorithm,
the delay time can be set more intelligently. One option
is to determine it dynamically based on the gathered infor-
mation regarding the target program. As mentioned, some
data races are likely to be involved in data race dependent
deadlocks. They can be identified via static analysis, and
preemptions before memory accesses can be limited to only
such accesses.
One of the major limitations of the current work is that it

only targets deadlocks caused by locking orders. Generally,
any synchronization between threads that has the potential
to make any set of threads circularly wait for each other may
lead to a deadlock. Moreover, the proposed technique can
be used to trigger other types of concurrency bugs rather
than merely deadlocks.
One challenge we encountered in the implementation of

Lockout was the identification of the same mutex across mul-
tiple program executions. We needed to store per-execution
information about locks and use this information in subse-
quent executions by recognizing to which mutex the stored
information belonged to. For a globally defined mutex, we
use the relative address in memory and identify the same
mutex accurately. But for dynamically allocated mutexes,
relative address cannot be used. Debug information such
as the line number where the mutex is defined or the name
of the mutex variable does not help either, as several un-
named mutexes can be dynamically allocated in the same
line in a loop. While [14] proposes two heuristic techniques
to overcome this challenge, there seems to be no trivial com-
prehensive solution for this challenge.
Although we focused at revealing more deadlocks in the

testing phase, Lockout (specially with algorithms with lower
overheads) can potentially be combined with automatic fail-
ure avoidance techniques (e.g [21, 15]) to provide faster and
better resilience against deadlocks in deployed software.

6. RELATED WORK
A few prior systems perturb thread scheduling and in-

crease the probability of deadlock manifestation.
DeadlockFuzzer [14] dynamically detects potential dead-

locks and biases a random scheduler to increase the prob-
ability of those deadlocks. It works in two phases; in the
first phase, it dynamically detects potential deadlocks, and
in the second phase, its random scheduler takes as input a
single deadlock cycle reported in the previous phase, and
tries to increase the manifestation probability of that dead-
lock. Similar to our approach, DeadlockFuzzer tries to make
threads circularly wait for each other. Instead of delays, it
pauses threads involved in the input deadlock cycle. The
threads will be paused until a real deadlock happens, or all
the enabled threads become paused (thrashing), in which
case it randomly un-pauses a thread and continues. Dead-
lockFuzzer may outperform our approach in the ability to
increase the probability of a particular deadlock because it
pauses all the involved threads until a deadlock or thrashing
occurs, whereas our approach only delays threads for a lim-
ited amount of time. On the other hand, DeadlockFuzzer
incurs high runtime overhead (approximately from 200% to
600% overhead for its second phase). Moreover, Deadlock-
Fuzzer only targets a single deadlock per execution; it re-
quires a dynamic deadlock detection phase; it does not use
information from previous executions; and it does not target
data race dependent deadlocks, though its random scheduler
might be effective in triggering such deadlocks.
ConTest [8] is similar to our work in that, it preempts

some threads before and after the accesses to shared memory
and synchronization primitives. However, ConTest focuses
on achieving enough coverage in thread interleaving space
rather than targeting deadlocks.
PCT [22] uses a priority-based scheduler and assigns ran-

dom priorities to threads at random synchronizations points
in the program in order to increase the bug manifestation
probability. PCT provides probabilistic guarantees for bug
manifestation in each execution. However, it does not tar-
get any specific bug. In addition, it does not improve its
probability guarantee using previous executions.

7. CONCLUSION
We presented Lockout, a technique and a tool that in-

creases the probability of deadlock manifestation in a pro-
gram, while preserving program semantics. Lockout requires
no changes to the runtime and the testing infrastructure.
Lockout works by altering the thread schedule to produce
interleavings that are more likely to deadlock. We evalu-
ated Lockout on a suite of multithreaded programs. Early
results suggest that Lockout rises the probability of deadlock
manifestation at reasonable overhead.

8. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their

invaluable feedback. This work was supported in part by
ERC Starting Grant No. 278656.

9. REFERENCES
[1] HawkNL. http://hawksoft.com/hawknl.
[2] R. Agarwal and S. D. Stoller. Run-time detection of

potential deadlocks for programs with locks, semaphores,

and condition variables. In Workshop on Parallel and
Distributed Systems: Testing and Debugging, 2006.

[3] S. Bensalem and K. Havelund. Dynamic deadlock analysis
of multi-threaded programs. In Hardware and Software,
Verification and Testing, pages 208–223. Springer, 2006.

[4] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and
N. Sinha. Concurrent software verification with states,
events, and deadlocks. Formal Aspects of Computing,
17(4):461–483, 2005.

[5] The Clang compiler. http://clang.llvm.org/.
[6] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking.

MIT, 1999.
[7] C. Demartini, R. Iosif, and R. Sisto. A deadlock detection

tool for concurrent java programs. Software: Practice and
Experience, 29(7):577–603, 1999.

[8] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.
Multithreaded java program test generation. IBM systems
journal, 41(1):111–125, 2002.

[9] D. Engler and K. Ashcraft. RacerX: Effective, static
detection of race conditions and deadlocks. In Symp. on
Operating Systems Principles, 2003.

[10] J. Gilchrist. PBZIP2. http://compression.ca/pbzip2, 2013.
[11] K. Havelund and T. Pressburger. Model checking java

programs using java pathfinder. International Journal on
Software Tools for Technology Transfer, 2(4):366–381, 2000.

[12] Apache httpd. http://httpd.apache.org, 2013.
[13] G.-H. Hwang, K. chung Tai, and T. lu Huang. Reachability

testing: An approach to testing concurrent software.
International Journal of Software Engineering and
Knowledge Engineering, 5:493–510, 1995.

[14] P. Joshi, C.-S. Park, K. Sen, and M. Naik. A randomized
dynamic program analysis technique for detecting real
deadlocks. ACM Sigplan Notices, 44(6):110–120, 2009.

[15] H. Jula, D. M. Tralamazza, C. Zamfir, G. Candea, et al.
Deadlock immunity: Enabling systems to defend against
deadlocks. In OSDI, volume 8, pages 295–308, 2008.

[16] B. Kasikci, C. Zamfir, and G. Candea. RaceMob:
Crowdsourced data race detection. In Symp. on Operating
Systems Principles, 2013.

[17] E. Koskinen and M. Herlihy. Dreadlocks: Efficient deadlock
detection. In ACM Symp. on Parallelism in Algorithms
and Architectures, 2008.

[18] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis and transformation. In Intl.
Symp. on Code Generation and Optimization, 2004.

[19] Y. Lei and R. H. Carver. Reachability testing of concurrent
programs. Software Engineering, IEEE Transactions on,
32(6):382–403, 2006.

[20] T. Li, C. S. Ellis, A. R. Lebeck, and D. J. Sorin. Pulse: A
dynamic deadlock detection mechanism using speculative
execution. In USENIX Annual Technical Conf., 2005.

[21] B. Lucia and L. Ceze. Cooperative empirical failure
avoidance for multithreaded programs. In Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems, 2013.

[22] M. Musuvathi, S. Burckhardt, P. Kothari, and
S. Nagarakatte. A randomized scheduler with probabilistic
guarantees of finding bugs. In Intl. Conf. on Architectural
Support for Programming Languages and Operating
Systems, 2010.

[23] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,
and I. Neamtiu. Finding and reproducing Heisenbugs in
concurrent programs. In Symp. on Operating Sys. Design
and Implem., 2008.

[24] M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static
deadlock detection. In Intl. Conf. on Software Engineering,
2009.

[25] SQLite. http://www.sqlite.org/, 2013.
[26] A. Williams, W. Thies, and M. D. Ernst. Static deadlock

detection for Java libraries. In European Conf. on
Object-Oriented Programming, 2005.

http://hawksoft.com/hawknl
http://compression.ca/pbzip2
http://httpd.apache.org

	Introduction
	Design
	Producing Target Binary
	Capturing the Program Behavior
	Deciding How to Interfere
	Simple Preemption
	Targeted Deadlock Induction
	Component Based Delays

	Implementation
	Evaluation
	Effectiveness
	Efficiency

	Discussion
	Related Work
	Conclusion
	Acknowledgments
	References

