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Dynamic Analyses for Parallel 
Programs 

• Data Race Detector, Record & Replay, 
Transactional Memory, Deterministic 
Execution, etc. 

 

• Performance is usually bad! 

– several times slower 

• Fundamental difficulties? 
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Cross-thread dependences 

 

 

• Crucial for dynamic analyses and systems 

• Capturing cross-thread dependences 

– Detecting 

e.g. data race detector, dependence recorder 

– Controlling 

e.g. transactional memory, deterministic execution 
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Typical approach 

• Per-object metadata (state) 

– E.g. last writer/reader thread 

• At each object access: 

– Check current state 

– Analysis-specific action 

– Update state if needed 

– Perform the access 

Atomically 
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How to 
guarantee? 



Pessimistic Synchronization 

• Used by most existing work 

– Data Race Detector 

• [FastTrack, Flanagan & Freund, 2009] 

– Atomicity Violation Detector 

• [Velodrome, Flanagan et al., 2008] 

– Record & Replay 

• [Instant Replay, LeBlanc et al., 1987] 

• [Chimera, Lee et al., 2012] 
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Pessimistic Synchronization 
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Pessimistic Synchronization 

 

 

 

 

 

• Synchronization on every access 

• 6X slowdown on average 
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LockMetadata() 

Check and compute new metadata 

Program access 

UnlockAndUpdateMetadata() 

Analysis-specific actions 



Optimistic Synchronization 
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• Used to improve performance 

– Biased Locking 

• [Lock Reservation, Kawachiya et al., 2002] 

• [Bulk Rebiasing , Russell & Detlefs, 2006] 

– Distributed Memory System 

• [Shasta, Scales et al. 1996] 

– Framework Support 

• [Octet, Bond et al. 2013]  



Optimistic Synchronization 
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• Avoid synchronization for non-conflicting 
accesses 

• Heavyweight coordination for conflicting 
accesses 



Optimistic Synchronization (Cont.) 
T1 T2 
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write check 
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• 26% on average with outliers 

– Expensive if there are many conflicting accesses 



Optimistic synchronization performs 
best if there are few conflicting 

accesses. 
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Pessimistic synchronization is 
cheaper for conflicting accesses. 
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Drink from both glasses? 

• Goal: 

– Optimistic sync. for most non-conflicting accesses 

– Pessimistic sync. for most conflicting accesses 

• Our approach: 

– Hybrid state model 

– Adaptive policy 

– Support for detecting and controlling cross-thread 
dependences 

 

 22 



Adaptive Policy 

• Decides when to perform Pess → Opt  

    and Opt → Pess transitions 

 

• Cost—Benefit model 

– Formulates the problem 

• Online profiling 

– Efficiently collects information and approximates 
the Cost-Benefit model 
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Cost—Benefit model 

• Compares total time spent in transitions if an 
object were optimistic or pessimistic 
– Whichever takes less time is beneficial 

 
𝑇𝑡𝑜𝑡𝑎𝑙_𝑂𝑝𝑡 >  𝑇𝑡𝑜𝑡𝑎𝑙_𝑃𝑒𝑠𝑠  ?  𝑃𝑒𝑠𝑠 ∶  𝑂𝑝𝑡  

 

 

• Only relies on numbers (or just the ratio) of non-
conflicting and conflicting transitions 
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Evaluation 

• Implementation 

– Jikes RVM 3.1.3 

• Parallel programs 

– DaCapo Benchmarks 2006 & 2009 

– SPEC JBB 2000 & 2005 

• Platform 

– 32 cores (AMD Opteron 6272) 
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Performance 
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Framework support 

• Detecting cross-thread dependences 

– dependence recorder 

• Key challenge 

– Identify the source location of a happens-before 
edge for a pessimistic conflicting transition 

– Current solution requires acquiring a lock and 
writing to remote thread’s log 
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Framework support (Cont.) 

• Controlling cross-thread dependences 
– enforcing Region Serializability (in progress) 

• Key challenge  
– Need to keep locking pessimistic objects until the end 

of a region 

• Possible solution 
– Defer unlocking of pessimistic objects until program 

lock releases 
• Helps dependence recorder 

• Simplifies instrumentation 
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Conclusion & Future work 

• Hybrid, adaptive synchronization achieves better 
performance 
– never significantly degrades performance 

– sometimes improves performance substantially 

• Future directions 
– Explore different adaptive policies (e.g. aggregate 

profiling) 

– Reduce instrumentation cost by deferring unlock 
operations of pessimistic synchronization 

– Apply to control cross-thread dependences 
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