
Drinking from Both Glasses: Adaptively
Combining Pessimistic and

Optimistic Synchronization for Efficient
Parallel Runtime Support

Man Cao

Minjia Zhang

Michael D. Bond

1

Dynamic Analyses for Parallel
Programs

• Data Race Detector, Record & Replay,
Transactional Memory, Deterministic
Execution, etc.

• Performance is usually bad!

– several times slower

• Fundamental difficulties?

2

Cross-thread dependences

• Crucial for dynamic analyses and systems

• Capturing cross-thread dependences

– Detecting

e.g. data race detector, dependence recorder

– Controlling

e.g. transactional memory, deterministic execution

3

o.f = …

… = o.f

T1 T2

Typical approach

• Per-object metadata (state)

– E.g. last writer/reader thread

• At each object access:

– Check current state

– Analysis-specific action

– Update state if needed

– Perform the access

Atomically

4

Typical approach

• Per-object metadata (state)

– E.g. last writer/reader thread

• At each object access:

– Check current state

– Analysis-specific action

– Update state if needed

– Perform the access

Atomically

5

How to
guarantee?

Pessimistic Synchronization

• Used by most existing work

– Data Race Detector

• [FastTrack, Flanagan & Freund, 2009]

– Atomicity Violation Detector

• [Velodrome, Flanagan et al., 2008]

– Record & Replay

• [Instant Replay, LeBlanc et al., 1987]

• [Chimera, Lee et al., 2012]

6

Pessimistic Synchronization

7

LockMetadata()

Pessimistic Synchronization

8

LockMetadata()

Check and compute new metadata

Pessimistic Synchronization

9

LockMetadata()

Check and compute new metadata

Analysis-specific actions

Pessimistic Synchronization

10

LockMetadata()

Check and compute new metadata

Program access

Analysis-specific actions

Pessimistic Synchronization

11

LockMetadata()

Check and compute new metadata

Program access

UnlockAndUpdateMetadata()

Analysis-specific actions

Pessimistic Synchronization

• Synchronization on every access

• 6X slowdown on average

12

LockMetadata()

Check and compute new metadata

Program access

UnlockAndUpdateMetadata()

Analysis-specific actions

Optimistic Synchronization

13

• Used to improve performance

– Biased Locking

• [Lock Reservation, Kawachiya et al., 2002]

• [Bulk Rebiasing , Russell & Detlefs, 2006]

– Distributed Memory System

• [Shasta, Scales et al. 1996]

– Framework Support

• [Octet, Bond et al. 2013]

Optimistic Synchronization

14

• Avoid synchronization for non-conflicting
accesses

• Heavyweight coordination for conflicting
accesses

Optimistic Synchronization (Cont.)
T1 T2

wr o.f

write check

wr o.f

write check

15

Optimistic Synchronization (Cont.)
T1 T2

wr o.f

write check

read check wr o.f

write check

16

Optimistic Synchronization (Cont.)
T1 T2

wr o.f

safe point

write check

read check

Analysis-specific
action

wr o.f

write check

17

Optimistic Synchronization (Cont.)
T1 T2

wr o.f

safe point

write check

read check

Analysis-specific
action

change metadata

wr o.f

write check

rd o.f

18

Optimistic Synchronization (Cont.)
T1 T2

wr o.f

safe point

write check

read check

Analysis-specific
action

change metadata

wr o.f

write check

rd o.f

19

• 26% on average with outliers

– Expensive if there are many conflicting accesses

Optimistic synchronization performs
best if there are few conflicting

accesses.

20

Pessimistic synchronization is
cheaper for conflicting accesses.

21

Drink from both glasses?

• Goal:

– Optimistic sync. for most non-conflicting accesses

– Pessimistic sync. for most conflicting accesses

• Our approach:

– Hybrid state model

– Adaptive policy

– Support for detecting and controlling cross-thread
dependences

 22

Adaptive Policy

• Decides when to perform Pess → Opt

 and Opt → Pess transitions

• Cost—Benefit model

– Formulates the problem

• Online profiling

– Efficiently collects information and approximates
the Cost-Benefit model

23

Cost—Benefit model

• Compares total time spent in transitions if an
object were optimistic or pessimistic
– Whichever takes less time is beneficial

𝑇𝑡𝑜𝑡𝑎𝑙_𝑂𝑝𝑡 > 𝑇𝑡𝑜𝑡𝑎𝑙_𝑃𝑒𝑠𝑠 ? 𝑃𝑒𝑠𝑠 ∶ 𝑂𝑝𝑡

• Only relies on numbers (or just the ratio) of non-
conflicting and conflicting transitions

24

Evaluation

• Implementation

– Jikes RVM 3.1.3

• Parallel programs

– DaCapo Benchmarks 2006 & 2009

– SPEC JBB 2000 & 2005

• Platform

– 32 cores (AMD Opteron 6272)

25

Performance

26

0

10

20

30

40

50

O
ve

rh
e

ad
 (

%
) Pure Pessimistic

Pure Optimistic

Adaptive

770 270 326 650 95 270 430 170 100 29,000 2,400 210 120 470

Performance

27

0

10

20

30

40

50

O
ve

rh
e

ad
 (

%
) Pure Pessimistic

Pure Optimistic

Adaptive

770 270 326 650 95 270 430 170 100 29,000 2,400 210 120 470

Performance

28

0

10

20

30

40

50

O
ve

rh
e

ad
 (

%
) Pure Pessimistic

Pure Optimistic

Adaptive

770 270 326 650 95 270 430 170 100 29,000 24,00 210 120 470

Framework support

• Detecting cross-thread dependences

– dependence recorder

• Key challenge

– Identify the source location of a happens-before
edge for a pessimistic conflicting transition

– Current solution requires acquiring a lock and
writing to remote thread’s log

29

Framework support (Cont.)

• Controlling cross-thread dependences
– enforcing Region Serializability (in progress)

• Key challenge
– Need to keep locking pessimistic objects until the end

of a region

• Possible solution
– Defer unlocking of pessimistic objects until program

lock releases
• Helps dependence recorder

• Simplifies instrumentation

30

Framework support (Cont.)

• Controlling cross-thread dependences
– enforcing Region Serializability (in progress)

• Key challenge
– Need to keep locking pessimistic objects until the end

of a region

• Possible solution
– Defer unlocking of pessimistic objects until program

lock releases
• Helps dependence recorder

• Simplifies instrumentation

31

Conclusion & Future work

• Hybrid, adaptive synchronization achieves better
performance
– never significantly degrades performance

– sometimes improves performance substantially

• Future directions
– Explore different adaptive policies (e.g. aggregate

profiling)

– Reduce instrumentation cost by deferring unlock
operations of pessimistic synchronization

– Apply to control cross-thread dependences

 32

